Detección de mutaciones implicadas en la resistencia a las fluoroquinolonas en muestras de campo positivas a Mycoplasma gallisepticum procedentes de pollos de engorde en Ecuador

Contenido principal del artículo

Laura De la Cruz
Adrián A. Díaz-Sánchez
Rosa E. Hernández-Fillor
Dany Naranjo-Feliciano
Evelyn Lobo-Rivero
Ivette Espinosa-Castaño

Resumen

The aim of this study was to determine the occurrence of mutations in the quinolone resistance-determining regions (QRDRs) of the genes gyrA and parC in M. gallisepticum positive field samples from broiler flocks in Ecuador. DNA was extracted from 24 M. gallisepticum PCR-positive samples from 22 commercial broiler flocks. The genes gyrA and parC were amplified by PCR. PCR products were sequenced by Sanger technology to analyze the genetic characteristics. To identify the mutations involved in fluoroquinolone resistance (FQR), the sequences obtained were processed and analyzed using the tools Geneious R11, BLASTn, MAFFT, ExPASy MBWS, and BioEdit. All samples had mutations in both gyrA and parC genes, resulting in changes at amino acid positions Ser-83→Ile and Ile-157→Val in GyrA, and Ser-80→Trp in ParC. In addition, a change at position His-59→Tyr in GyrA was also found in one sample. The results showed that alterations in both genes have been commonly linked to FQR in mutants of other Mycoplasma species, including M. gallisepticum. This is the first study on M. gallisepticum positive samples from chickens in Ecuador which revealed the occurrence of mutations resulting in amino acid changes previously linked to FQR.

Detalles del artículo

Cómo citar
De la Cruz, L., Díaz-Sánchez, A. A., Hernández-Fillor, R. E., Naranjo-Feliciano, D., Lobo-Rivero, E., & Espinosa-Castaño, I. (2022). Detección de mutaciones implicadas en la resistencia a las fluoroquinolonas en muestras de campo positivas a Mycoplasma gallisepticum procedentes de pollos de engorde en Ecuador. Revista De Salud Animal, 44. Recuperado a partir de http://revistas.censa.edu.cu/index.php/RSA/article/view/1184
Sección
ARTÍCULOS ORIGINALES

Citas

Nhung NT, Chansiripornchai N, Carrique-Mas, J.J. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front Vet Sci. 2017;4:126.

Medina JL, Lugo K, Vargas J, Morales N, Burgos A, Martínez EP, et al. Ecuadorian mainland industrial poultry production is free of H5/H7 Avian influenza virus: National surveillance program in 2016. J. Vet. Med. Sci. 2019;81:1597-1600.

Kleven SH. Control of avian mycoplasma infections in commercial poultry. Avian dis. 2008;52:367-374.

Ball C, Forrester A, Ganapathy K. Co-circulation of genetically diverse population of vaccine related and unrelated respiratory mycoplasmas and viruses in UK poultry flocks with health or production problems. Vet. Microbiolgy. 2018;225:132-138.

Raviv Z, Kleven SH. The development of diagnostic real-time TaqMan PCRs for the four pathogenic avian mycoplasmas. Avian dis. 2009;53:103-107.

Gerchman I, Lysnyansky I, Perk S, Levisohn S. In vitro susceptibilities to fluoroquinolones in current and archived Mycoplasma gallisepticum and Mycoplasma synoviae isolates from meat-type turkeys. Vet Microbiol. 2008;131:266-276.

Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53:1565-1574.

Beeton ML, Chalker VJ, Kotecha S, Spiller OB. Comparison of full gyrA, gyrB, parC and parE gene sequences between all Ureaplasma parvum and Ureaplasma urealyticum serovars to separate true fluoroquinolone antibiotic resistance mutations from non-resistance polymorphism. J. Antimicrob. Chemother. 2009;64:529-538.

Taiyari H, Faiz NM, Abu J, Zakaria Z. Antimicrobial minimum inhibitory concentration of Mycoplasma gallisepticum: a systematic review. J. Appl. Poult. Res. 2021;30:100160.

Reinhardt A, Bébéar C, Kobisch M, Kempf I, Gautier-Bouchardon A. Characterization of mutations in DNA gyrase and topoisomerase IV involved in quinolone resistance of Mycoplasma gallisepticum mutants obtained in vitro. Antimicrob. Agents Chemother. 2002;46:590-593.

Gerchman I, Lysnyansky I, Perk S, Levisohn S. In vitro susceptibilities to fluoroquinolones in current and archived Mycoplasma gallisepticum and Mycoplasma synoviae isolates from meat-type turkeys. Vet Microbiol. 2008;131:266-276.

Hernández Y, Lobo E, Martínez S, Zamora L. Evaluación de diferentes métodos de extracción de ADN de micoplasmas para su empleo en el diagnóstico por PCR. Rev Salud Anim. 2009;31:108-114.

De la Cruz L, Barrera M, Rios L, Corona-González B, Bulnes CA, Díaz-Sánchez AA, et al. Unraveling the Global Phylodynamic and Phylogeographic Expansion of Mycoplasma gallisepticum: Understanding the Origin and Expansion of This Pathogen in Ecuador. Pathogens. 2020;9(9):E674.

Lysnyansky I, Gerchman I, Levisohn S, Mikula I, Feberwee A, Ferguson N, et al. Discrepancy between minimal inhibitory concentration to enrofloxacin and mutations present in the quinolone-resistance determining regions of Mycoplasma gallisepticum field strains. Vet Microbiology. 2012;160:222-226.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772-780.

Al-Agamy, Shibl AM, Radwan HH. Detection of mutations in quinolone-resistant determining regions in clinical isolates of Escherichia coli from Saudi Arabia. Afr J. Biotechnol. 2012;11:1054-1058.

Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66:551-559.

Kommedal Ø, Kvello K, Skjåstad R, Langeland N, Harald G. WikerDirect 16S rRNA Gene Sequencing from Clinical Specimens, with Special Focus on Polybacterial Samples and Interpretation of Mixed DNA Chromatograms Journal of clinical microbiology. 2009:3562-3568.

Maruri F, SterlingTR, Kaiga AW, Blackman A, van der Heijden YF. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother. 2012;67:819-831.

Sahar O, Abou-Khadra SH. Genetic Analysis of Fluoroquinolone Resistant Genes in Mycoplasma gallisepticum Field Isolates. Egypt. J. Chem. Environ. Health. 2019;5:37-55.

Bhatnagar K, Wong A. The mutational landscape of quinolone resistance in Escherichia coli. PloS One14. 2019;e0224650.

Reinhardt A, Bébéar C, Kobisch M, Kempf I, Gautier-Bouchardon A. Characterization of mutations in DNA gyrase and topoisomerase IV involved in quinolone resistance of Mycoplasma gallisepticum mutants obtained in vitro. Antimicrob. Agents Chemother. 2002a;46:590-593.

Reinhardt A, Kempf I, Kobisch M, Gautier-Bouchardon A. Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target of enrofloxacin and impact of mutations in topoisomerases on resistance level. J. Antimicrob Chemother. 2002b;50:589-592.

Lysnyansky I, Gerchman I, Perk S, Levisohn S. Molecular characterization and typing of enrofloxacin-resistant clinical isolates of Mycoplasma gallisepticum. Avian Dis. 2008;52:685-689.

Gautier-Bouchardon A. Antimicrobial Resistance in Mycoplasma spp. Microbiol SpectrSpectrum. 2018;6(4):ARBA-0030-2018. doi:10.1128/microbiolspec.ARBA-0030-2018.

Faucher M, Nouvel LX, Dordet-Frisoni E, Sagne E, Baranowski E, Hygonenq MC, et al. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet15.2019:e1007910.

Pereyre S, Tardy F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics. 2021;10:1216. https://doi.org/10.3390/ antibiotics10101216

Shimada Y, Deguchi T, Nakane K, Masue T, Yasuda M, Yokoi S, et al. Emergence of clinical strains of Mycoplasma genitalium harbouring alterations in ParC associated with fluoroquinolone resistance. Int J Antimicrob Agents2010;36:255-258.

Li J, Lu D, Liu Z, Zhang X, Wei F, Liu Y, et al. Role of mutations in DNA gyrase and topoisomerase IV in fluoroquinolones-resistance of Mycoplasma gallisepticum obtained in vitro and in vivo. J Anim Vet Adv. 2012;11:2327-2332.

Artículos más leídos del mismo autor/a

> >>