Assessment of the viability of 3rd generation cephalosporin-resistant enterobacterial cells during transport under different storage conditions

Contenido principal del artículo

Yanet López-Dorta
Michel Báez-Arias
Rosa Elena Hernández-Fillor
Ivette Espinosa-Castaño


Antimicrobial resistance (AMR) is a growing threat to public and animal health. Monitoring is fundamental in terms of obtaining, compiling and exchanging data and carrying out interventions. The efficient transport of samples is an essential part of the epidemiological research and diagnostic laboratory. The objective of this study was to assess the viability of two 3rd generation cephalosporin-resistant enterobacterial species under different storage conditions for detection of antimicrobial resistance. The preliminary study was based on the principles of the qualitative method published by the CLSI (M-40A2). Swabs were introduced in tubes containing different loads of target microorganisms (Extended spectrum beta-lactamase-producing Escherichia coli and third generation cephalosporin-resistance Salmonella enterica, clinical isolate), subsequently placed in Cary-Blair transport medium andpreserved at room temperature (28-32°C) and under refrigerated conditions (4-8°C), during 24 and 48 hrs. The results showed recovery for all microorganism / dilution / temperature combinations at 24 and 48 hours, being the refrigerated transport during 24 hours the most appropriate for the storage, preserving initial load of each bacteria. However at room temperature, it is not recommended to keep the samples due to the observed overgrowth.

Detalles del artículo

Cómo citar
López-Dorta, Y., Báez-Arias, M., Hernández-Fillor, R. E., & Espinosa-Castaño, I. (2021). Assessment of the viability of 3rd generation cephalosporin-resistant enterobacterial cells during transport under different storage conditions. Revista De Salud Animal, 43(1). Recuperado a partir de


The OIE Strategy on Antimicrobial Resistance and the Prudent Use of Antimicrobials, 2016; Available from:,

Lezameta L, Gonzáles-Escalante E, Tamariz JH. Comparación de cuatro métodos fenotípicos para la detección de beta-lactamasas de espectro extendido. RevPerú. MedExpSalud Publica. 2010;27(3):345-351.

Sistema mundial de vigilancia de la resistencia a los antimicrobianos: Manual para la primera fase de implementación (Global antimicrobialresistancesurveillancevsystem: manual forvearlyvimplementation). Ginebra. Organización Mundial de la Salud; 2017. Licencia: CC BY-NC-SA 3.0 IGO.

Lopardo HA, Borgnia D, Mastroianni A. Estudio de dos sistemas de transporte para mantener la viabilidad de bacterias de interés clínico. Acta BioquímClínLatinoam 2012;46 (2):229-231.

Human RP, Jones GA. Evaluation of swab transport systems against a published Standard.J ClinPathol. 2004;57:762-763. doi: 10.1136/jcp.2004.016725

Sánchez C, Guerrero C, Sánchez C. Recogida, transporte y procesamiento general de las muestras. Procedimientos en Microbiología Clínica. SEIMC 2003.

Bou AG, Chaves SF, Oliver PA, Oteo IJ. Métodos microbiológicos para la vigilancia del estado de portador de bacterias multirresistentes. Procedimientos en Microbiología Clínica. Cercenado Mansilla E, Cantón Moreno R (editores). Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC).2016.

Gella TFJ. La directiva 98/79/CE sobre productos sanitarios para diagnóstico in vitro. In vitro veritas 2001;2, art. 16:<

Clinical and Laboratory Standards Institute (CLSI).2003. Quality Control of Microbiological Transport Systems. Approved Standard M40-A. Wayne, PA.

Clinical and Laboratory Standards Institute (CLSI). 2014. Quality Control of Microbiological Transport Systems; Approved Standard- Second Edition. CLSI document M40-A2, Wayne, PA.

Van HKG, Audette CD, Tucker KA, Sebeck D. Comparison of 3 swab transport systems for direct release and recovery of aerobic and anaerobic bacteria. DiagnMicrobiol Infect Dis. 2008;62:471-473.

Marrero CM, Mora M, Hernández-Fillor RE, Baez M, Mora MM, García T, Espinosa-Castaño I. Identification of enterobacteria producing extended-spectrum beta-lactamases (ESBLs) in pig farms in Matanzas province. Rev Salud Anim. 2017;39(3).

Warnke P, Warning L, Podbielski A. Some are more equal—a comparative study on swab uptake and release of bacterial suspensions. PLoSOne 2014a;9:e102215.

Gizzie N, Adukwu E. 2016. Evaluation of liquid-based swab transport systems against the new approved CLSI M40-A2 standard. J ClinMicrobiol 54:1152-1156. doi:10.1128/JCM.03337-15.

Morosini MI, Loza E, Gutiérrez O, ALmaraz F, Baquero F, Canton R. Evaluation of 4 Swab Transport Systems for the Recovery of ATCC and Clinical Strains with Characterized Resistance Mechanisms. Diagn.Microbiol. Infect. Dis.2006; 56:19-24.

Sien O, Jean-Baptiste R, Timothy W, Cedric PY, Janneke C, Erika V, Delphine M, et al. Clinical bacteriology in low-resource settings: today’s solutions.Lancet Infect Dis. 2018;

Warnke P, Redanz S, Zaatreh S, Podbielski A. Augmented recovery of microorganisms from swabs by homogenization: a novel standardizable high-throughput approach. Diagn Microbiol Infect Dis. 2016;84(1):16-18. doi: 10.1016/j.diagmicrobio.

Sánchez-Romero MI, et al. Recogida,transporte y procesamiento general de las muestras en el laboratorio de Microbiología. Enferm Infecc Microbiol Clin. 2019;37(2):127-134.

Nys S, Vijgen S, Magerman K, Cartuyvels R. Comparison of Copan eSwab with the Copan Venturi Transystem for the quantitative survival of Escherichia coli, Streptococcus agalactiae and Candida albicans. Eur J Clin Microbiol Infect Dis. 2010;29(4):453-456. doi: 10.1007/s10096-010-0883-5.

Smismans A, Verhaegen J, Schuermans A, Frans J. Evaluation of the Copan ESwab transport system for the detection of methicillin-resistant Staphylococcus aureus: a laboratoryand clinical study. DiagnMicrobiolInfectDis. 2009;65:108-111.

Etienne R, Brandusa L, Radu C, Çag˘rı B, Elisabeth P, Cécile A, et al. Relative Fecal Abundance of Extended-Spectrum--LactamaseProducingEscherichia coliStrains and Their Occurrence in Urinary Tract Infections in WomenAntimicrobial Agents and Chemotherapy.2013;57(9):4512-4517.doi:10.1128/AAC.00238-13

Robé C, Blasse A, Merle R, Friese A, Roesler U, Guenther S. Low Dose Colonization of Broiler Chickens With ESBL-/AmpC- Producing Escherichia coli in a Seeder-Bird Model Independent of Antimicrobial Selection Pressure. Front Microbiol. 2019;10:2124. doi: 10.3389/fmicb.2019.02124

Hasman H, Yvonne A, Rene H, Lina MC, Valeria B, Guerra-RomanB. Isolation of ESBL-, AmpC- and carbapenemase-producing E. coli from caecal samples. Laboratory Protocol of the European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR) Version6, Febraury 2018.

Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (2013/652/EU).OJ L 303, 14.11.2013, p. 26. Disponible en:

Hernández-Fillor RE, Brilhante M, Marrero-Moreno CM, Baez M, Espinosa I, Perreten V. Characterization of Third-Generation Cephalosporin Resistant Escherichia coli Isolated from Pigs in Cuba Using Next-Generation Sequencing. Microb Drug Resist. 2021 Jan 19. doi: 10.1089/mdr.2020.0174. Epub ahead of print. PMID: 33470893.

Artículos más leídos del mismo autor/a