Aislamiento e identificación de bacterias ácido lácticas del tracto digestivo de abejas adultas Apis mellifera

Contenido principal del artículo

Juan Emilio Hernández García
José Antonio Rodríguez Díaz
Laureano Sebastián Frizzo
Ken Jact Fernández León
Yovanni Solenzal Valdivia
Lorena Paola Soto
Delso Viciedo Gallo

Resumen

Los objetivos del estudio fueron aislar e identificar bacterias ácido lácticas (BAL) a partir del tracto digestivo de abejas Apis mellifera. Se obtuvieron 35 aislamientos, de ellos 13 se consideraron como BAL por sus características morfológicas y bioquímicas. Se amplificó mediante PCR y usando cebadores universales un fragmento del gen ADNr 16S a partir del ADN bacteriano. Los productos de PCR obtenidos se purificaron y secuenciaron. Las secuencias obtenidas se compararon con otras depositadas en la base de datos GenBank. Las cepas también se identificaron mediante caracterización proteómica utilizando MALDI TOF MS. Los resultados mostraron la presencia de cuatro géneros de BAL; predominaron Lactobacillus spp. (38,4 %) y Fructobacillus spp. (30,8 %) y, en el análisis por especies, se identificaron Lactobacillus kunkeei (31 %) y Fructobacillus fructosus (31 %). El presente estudio confirma el predominio del género Lactobacillus dentro de las bacterias ácido láctico del tracto digestivo de las abejas. Esta investigación es la primera en reportar aislamiento e identificación molecular de BAL obtenidas desde el tracto digestivo de abejas melíferas en Cuba.

Detalles del artículo

Cómo citar
1.
Hernández García JE, Rodríguez Díaz JA, Frizzo LS, Fernández León KJ, Solenzal Valdivia Y, Soto LP, Viciedo Gallo D. Aislamiento e identificación de bacterias ácido lácticas del tracto digestivo de abejas adultas Apis mellifera. Rev. Salud Anim. [Internet]. 1 de agosto de 2020 [citado 14 de noviembre de 2024];42(2). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/1074
Sección
ARTÍCULOS ORIGINALES

Citas

Demedio JL, Sanabria JL, Leal A, Lóriga W, Fonte L. Polinización apícola: una invitación a los agricultores. Revista CEDAR Universidad Agraria de La Habana "Fructuoso Rodríguez Pérez" Cuba. 2011.

Kwong WK, Moran NA. Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes. 2015;6(3):214-220.

Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The Honey Bee Gut Microbiota: Strategies for Study and Characterization. Insect molecular biology. 2019.

Verde MM. Apicultura y seguridad alimentaria. Revista Cubana de Ciencia Agrícola. 2014;48(1):25.

Sandoz MAM. Efectos del cambio climático sobre la polinización y la producción agrícola en América Tropical. Revista Ingeniería. 2016;26(1):11-20.

Marche MG, Satta A, Floris I, Pusceddu M, Buffa F, Ruiu L. Quantitative variation in the core bacterial community associated with honey bees from Varroa-infested colonies. Journal of Apicultural Research. 2019;58(3):444-454.

Moran NA, Hansen AK, Powell JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PloS one. 2012;7(4):e36393.

Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). The ISME journal. 2014;8(12):2369.

Anjum SI, Shah AH, Aurongzeb M, Kori J, Azim MK, Ansari MJ, et al. Characterization of gut bacterial flora of Apis mellifera from north-west Pakistan. Saudi journal of biological sciences. 2018;25(2):388-392.

Kwong WK, Moran NA. Gut microbial communities of social bees. Nature Reviews Microbiology. 2016;14(6):374.

Tajabadi N, Mardan M, Manap MYA, Shuhaimi M, Meimandipour A, Nategghi L. Detection and identification of Lactobacillus bacteria found in the honey stomach of the giant honey bee Apisdorsata Apidologie. 2011;42(5):642-649.

Chahbar N, Mahamed AL. Contribution to identification of the microflora of the digestive tract and pollen of Algerian honeybees: Apis mellifera intermissa and Apis mellifera sahariensis. International Journal Current Microbiology Applied Sciences. 2014;3(6):7.

Anderson KE, Rodrigues PA, Mott BM, Maes P, Corby-Harris V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microbial ecology. 2016;71(4):1008-1019.

Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and evolution. 2018;8(1):441-451.

Tannock GW. A special fondness for lactobacilli. Appl Environ Microbiol. 2004;70(6):3189-3194.

Engel P, James RR, Koga R, Kwong WK, McFrederick QS, Moran NA. Standard methods for research on Apis mellifera gut symbionts. J Apicultural Res. 2013;52(4):24.

Settanni L, van Sinderen D, Rossi J, Corsetti A. Rapid differentiation and in situ detection of 16 sourdough Lactobacillus species by multiplex PCR. Appl Environ Microbiol. 2005;71(6):3049-3059.

Yoshiyama M, Kimura K. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebrate Pathology. 2009;84:6.

Libonatti C, Agüeria D, García C, Basualdo M. Weissella paramesenteroides encapsulation and its application in the use of fish waste. Revista Argentina de Microbiología. 2019;51(1):81-83.

Olofsson TC, Butler É, Markowicz P, Lindholm C, Larsson L, Vásquez A. Lactic acid bacterial symbionts in honeybees-an unknown key to honey´s antimicrobial and therapeutic activities in vitro. International Wound Journal. 2016;13(5):668-679.

Lamei S, Stephan JG, Riesbeck K, Vasquez A, Olofsson T, Nilson B, et al. The secretome of honeybee-specific lactic acid bacteria inhibits Paenibacillus larvae growth. J Apicultural Res. 2019:1-8.

Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences. 2017;114(18):4775-4780.

Janashia I, Choiset Y, Jozefiak D, Déniel F, Coton E, Moosavi-Movahedi AA, et al. Beneficial protective role of endogenous lactic acid bacteria against mycotic contamination of honeybee beebread. Probiotics and Antimicrobial Oroteins. 2018;10(4):638-646.

Rabadjiev Y, Christova P, Iliev I, Ivanova I. Identification of a Lactic Acid Bacterial flora within the honey intestinal tract of Apis mellifera from different regions of Bulgaria. Journal of BioScience & Biotechnology. 2015;Special Edition: pp.215-219.

Mathialagan M, Edward Y, David P, Senthilkumar M, Srinivasan M, Mohankumar S. Isolation, characterization and identification of probiotic lactic acid bacteria (LAB) from honey bees. International J Current Microbiol Applied Sci. 2018;7:849-906.

Coeuret V, Dubernet S, Bernardeau M, Gueguen M, Vernoux JP. Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Le Lait. 2003;83(4):269-306.

Sharifpour MF, Mardani K, Ownagh A, editors. Molecular identification and phylogenetic analysis of Lactobacillus and Bifidobacterium spp. isolated from gut of honeybees (Apis mellifera) from West Azerbaijan, Iran. Veterinary Research Forum; 2016: Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Tajabadi N, Mardan M, Abdul Manap M Y, Mustafa S. Molecular identification of Lactobacillus spp. isolated from the honey comb of the honey bee (Apis dorsata) by 16S rRNA gene sequencing. J Apicultural Res. 2013;52(5):7.

Gallefoss I. A Comparative Analysis on Phylogeny, Genetics and Selected Phenotypes of Lactic Acid Bacteria Isolated from Gut Microbiota of Honey Bee Versus Flowers. Thesis:Master/Technology - Chemistry and Biotechnology, Molecular Biology Department of Chemistry, Biotechnology and Food Science. 2016.

Gilliam M. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Letters. 1997;155(1):1-10.

Tajabadi N, Mardan M, Saari N, Mustafa S, Bahreini R, Abdul Manap MY. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Brazilian J Microbiol. 2013;44(3):6.

Gallefoss I. A comparative analysis on phylogeny, genetics and selected phenotypes of lactic acid bacteria isolated from gut microbiota of honey bee versus flowers: Norwegian University of Life Sciences, As.2016.

Endo A, Salminen S. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Systematic and Applied Microbiol. 2013;36(6):444-448.

Rangberg A, Mathiesen G, Amdam GV, Diep DB. The paratransgenic potential ofLactobacillus kunkeeiin the honey beeApis mellifera. Beneficial Microbes. 2015.

Yu AO, Leveau JH, Marco ML. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environmental Microbiology Reports. 2020;12(1):16-29.

Meryandini A, Karyawati AT, Nuraida L, Lestari Y. Lactic Acid Bacteria from Apis dorsata Hive Possessed Probiotic and Angiotensin-Converting Enzyme Inhibitor Activity. Makara Journal of Science. 2020;24(1):7.

Ruiz Rodriguez LG, Mohamed F, Bleckwedel J, Medina RB, De Vuyst L, Hebert EM, et al. Diversity and Functional Properties of Lactic Acid Bacteria Isolated From Wild Fruits and Flowers Present in Northern Argentina. Frontiers in Microbiol. 2019;10:1091.

Vuong HQ, McFrederick QS. Comparative genomics of wild bee and flower isolated Lactobacillus reveals potential adaptation to the bee host. Genome Biology and Evolution. 2019.

Ellegaard KM, Brochet S, Bonilla-Rosso G, Emery O, Glover N, Hadadi N, et al. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Molecular Ecology. 2019;28(9):2224-2237.

Samedi L, Charles AL. Isolation and characterization of potential probiotic Lactobacilli from leaves of food plants for possible additives in pellet feeding. Annals of Agricultural Sciences. 2019.

Samedi L, Charles AL. Isolation and characterization of potential probiotic Lactobacilli from leaves of food plants for possible additives in pellet feeding. Annals of Agricultural Sciences. 2019;64:55-62.

Huang Q, Lopez D, Evans JD. Shared and unique microbes between Small hive beetles (Aethina tumida) and their honey bee hosts. MicrobiologyOpen. 2019:e899.

Kačániová M, Kunová S, Ivanišová E, Terentjeva M, Gasper J. Antimicrobial Effect of Lactobacillus kunkeei Against Pathogenic Bacteria Isolated from Bees´ Gut. Scientific Papers: Animal Science & Biotechnologies/Lucrari Stiintifice: Zootehnie si Biotehnologii. 2019;52(2).

Kačániová M, Gasper J, Brindza J, Schubertová Z, Ivanišová E. Bacteria of apis mellifera gastrointestinal tract: counts, identification and their antibiotic resistance. Agrobiodiversity for Improving Nutrition, Health and Life Quality. 2017(1).

Chi H. Garvicin KS. A bacteriocin with wide inhibitory spectrum and potential application. Norwegian University of Life Sciences Faculty of Chemistry, Biotechnology and Food Science.[Thesis Philosophiae Doctor (PhD)]. 2018.

Gao Y, Li D, Liu S, Zhang L. Garviecin LG34, a novel bacteriocin produced by Lactococcus garvieae isolated from traditional Chinese fermented cucumber. Food Control. 2015;50:896-900.

Amaral CM. El análisis de patentes, herramienta para la determinación de líneas de investigación sobre probióticos en Cuba. INFO´2008 IV Seminario internacional sobre estudios cuantitativos y cualitativos de la ciencia y la tecnologia "Prof. Gilberto Sotolongo Aguilar". 2008.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.