VIUSID VET® en el crecimiento, la frecuencia y gravedad de la neumonía en precebas porcinas

Contenido principal del artículo

Viviana Isabel López Saumell
Lucía Palenzuela Sanabria
Juan Guzmán Rondon
Eleuterio Hernández
Ernesto Vega Cañizares
Pastor Alfonso

Resumen

El objetivo del presente estudio fue evaluar el efecto de VIUSID VET® líquido (CATALYSIS) en la ganancia media diaria de peso (GMD), la frecuencia y la gravedad de la neumonía en precebas porcinas. Se utilizaron cerdos mestizos al destete (26 días) alojados en grupos de 10 individuos a razón 4,76 m2/cerdo, sobre piso plástico ranurado, dentro de una instalación cerrada con ventilación mecánica mediante extractores. Dos tratamientos consistentes en VIUSID VET® líquido al 0,2 % en el agua de bebida o control se asignaron aleatoriamente. En la evaluación de la GMD se utilizaron 80 precebas porcinas divididas en igual cantidad entre el grupo tratado con VIUSID VET® y el control. Para comparar las de proporciones de pulmones neumónicos se incluyeron 314 individuos (161 tratados con VIUSID VET® y 153 controles), mientras la gravedad de la neumonía incluyó 63 precebas (29 tratadas y 34 controles). VIUSID VET® propició asimetría positiva en la GMD con mayor número de animales por encima de la media del grupo mientras el control mostró asimetría negativa. El tratamiento con VIUSID VET® promovió una prevalencia de neumonía significativamente menor (41,61 % vs 62,74 %), así como tendencia a menor gravedad de este trastorno con valores medios equivalentes a los de la mitad del grupo control. La reducción significativa de la prevalencia de neumonía promovida por VIUSID VET®, permite esperar que su uso en precebas porcinas se acompañe de mejoras del desempeño productivo con beneficios en la economía del productor, así como ambientales como alternativa a los antibióticos.

Detalles del artículo

Cómo citar
1.
López Saumell VI, Palenzuela Sanabria L, Guzmán Rondon J, Hernández E, Vega Cañizares E, Alfonso P. VIUSID VET® en el crecimiento, la frecuencia y gravedad de la neumonía en precebas porcinas. Rev. Salud Anim. [Internet]. 28 de febrero de 2024 [citado 11 de octubre de 2024];46:https://cu-id.com/2248/v46e02. Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/1304
Sección
ARTÍCULOS ORIGINALES

Citas

Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399: 629-55. http://dx.doi.org/10.1016/s0140-6736(2 1)02724-0

J O'Neill. final report and recommendations. Review on antimicrobial resistance [en línea] mayo 2016 [Citado 19 junio 2023] 3. Disponible en: https://amrreview.org/sites/default/files/1605 25_Final%20paper_with%20cover.pdf.

World Health Organization WHO, Food and Agriculture Organization of the United Nations FAO and World Organisation for Animal. Monitoring and Evaluation of the Global Action Plan on Antimicrobial Resistance. Framework and Recommended Indicators [en línea] febrero 2019 [Citado 19 abril 2023] 22. Disponible en: https://iris.who.int/bitstream/handle/10665/3250

/9789241515665-eng.pdf?sequence=1

WOAH. Better understanding of the global situation. Annual report on antimicrobial agents intended for use in animals [en línea] febrero 2022 [Citado 06 junio 2023] 22. Disponible en: https://www.woah.org/app/uploads/2022/06/a-six th-annual-report-amu-final.pdf.

STAR-IDAZ. Research Priorities for

Alternatives for Antibiotics (ATA). R [en línea] febrero 2022 [Citado 10 octubre 2023] 24. Disponible en: https://www.star-idaz.net/app/ uploads/2023/06/Star-IDAZ-executive-summary -on-ATA.pdf.

Lekagul, A, Tangcharoensathien, V, Yeung, S. Patterns of antibiotic use in global pig production. a systematic review. Veterinary and Animal Science, 2019, (7) 100058. https://doi. org/10.1016/j.vas.2019.100058.

CATALYSIS. VIUSID VET L. [Internet], 2023 [citado 21 de noviembre de 2023]. Disponible en: https://www.catalysisvet.es/viu

sid-vet-l/

Rodríguez-Fernández, J C, Méndez-García, V, Calero-Herrera, I, Peña-Calzada, K, MartínezTorres, O., y Gómez-Abdura, J. Effect of the Nutritional Supplement VIUSID Vet on the Productivity of Fattening Pigs in a Low-Input Farming System. Journal of Environmental Science and Engineering B. 2015; 2: 607-613. doi: 10.17265/2162-5263/2015.11.005

Rodríguez-Fernández, J C, Méndez-García, V, Calero-Herrera, I, Peña-Calzada, K, MartosTejera, D., y Kukurtcu, B. Evaluation of the nutritional supplement VIUSID vet powder on the productive behaviour of sows and boars. Journal ofEnvironmental Science and Engineering. 2016; (5): 432-439.

Rodríguez, J C, Calero, I, Méndez, V, Peña, K, y Marín, R. Efecto de un suplemento nutricional activado molecularmente (VIUSID vet) sobre el comportamiento productivo y hematológico de cerdas de reemplazo. Revista Computadorizada de Producción. 2018; 2: 25.

Rodríguez-Fernandez, J C, Peña-Calzada, K, Calero-Herrera, I, Mendez-García, V,. Evaluation of the VIUSID Vet (Powder and Solution) Nutritional. Journal of Agricultural Science and Technology. 2020; (10): 138- 146. doi: 10.17265/2161-6256/2020.03.004.

Ocampo, L, Tapia, G, Gutiérrez, L, y Sumano, H. Effects of glycyrrhizic acid (VIUSID-Vet powder) on the reduction of influenza virus spread and on production. Veterinaria México. 2017; 1: 1-13.

Almaguel, R E, Piloto, J L, Cruz, E, Camino, Y, y Hermida, H. Resultados de prueba de comportamiento en campo utilizando cerdos de 26 a 75 días de edad alimentados con dietas donde se incluye el VIUSID en los piensos iniciadores. Revista Computadorizada de Producción Porcina. 2017; 3: 24.

Rodríguez, J C, Calero, I, Méndez, V, Peña, K, y Marín, R. Efecto de un suplemento nutricional activado molecularmente (VIUSID VET) sobre el comportamiento productivo y hematológico de cerdas de reemplazo. Revista Computadorizada de Producción Porcina. 2018; 2: 25.

Magalhaes, E S, Zhang, D, Wang, C, Thomas, P, Moura, C A, Holtkamp, D J, y. Field Implementation of Forecasting Models for Predicting Nursery Mortality in a Midwestern US Swine Production System. Animals. 2023; 13 (15): 2412.

Saade, G, Deblanc, C, Bougon, J, MaroisCréhan, C, Fablet, C, Auray, G, Meurens, F. Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research. 2020; 51(1), 1-19. https://doi.org/10. 1186/s13567-020-00807-8.

Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L;et al. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet. Sci. 2023, 10, 595. https://doi.org/10.3390/vetsc i10100595.

Calderon Diaz, J A, Fitzgerald, R M, Shalloo, L, Rodrigues da Costa, M, Niemi, J, Leonard, F C;et al. Financial analysis of herd status and vaccination practices for porcine reproductive and respiratory syndrome virus, swine influenza virus, and mycoplasma hyopneumoniae in farrow-to-finish pig farms using a bio-economic simulation model. Front. Vet. Sci., 2020 (7) https://doi.org/10.3389/fvets.2020.556674.

Paz-Sánchez, Y.; Herráez, P.; Quesada-Canales, Ó.; Poveda, C.G.; Díaz-Delgado, J.; QuintanaMontesdeoca, M.d.P.; et al. Assessment of Lung Disease in Finishing Pigs at Slaughter: Pulmonary Lesions and Implications on Productivity Parameters. Animals 2021 (11) 3604. https://doi.org/10.3390/ani11123604.

Rueda, D, Bulnes, C, Durand, R y Bustamante, P. Morphological evaluation of porcine pneumonias in slaughterhouses by using a score method. Revista de Salud Animal. 2002; (3): 24.

Castillo D,Y, y Miranda, I. Sistema para comparación de proporciones múltiples. Revista de Protección Vegetal. 2014; 3: 29.

R: A Language and Environment for Statistical Computing. R [en línea]. Vienna, Australia; 04 marzo 2023 [Citado 21 diciembre 2023]. Disponible en: https://www.R_project.org/.

Wickham H. ggplot2 Elegant Graphics for Data Analysis (2nd Edition). vet. 2017; (77): 3-5.

Heyer, A, y Lebret, B. Compensatory growth response in pigs: effects on growth performance, composition of weight gain at carcass and muscle levels, and meat quality. J. Anim. Sci. 2007. 85:769-778, https://doi.org/10.2527/jas. 2006-164.

Skiba G. Physiological aspects of compensatory growth in pigs. Journal of Animal and Feed Sciences, 2005 (14) 191-203.

Rodriguez-Fernandez, J C, Peña-Calzada, K, Calero-Herrera, I, Mendez-García, V, Kukurtcu, B. Evaluation of the VIUSID Vet (Powder and Solution) Nutritional Supplement in GrowingFinishing Pigs. Journal of Agricultural Science and Technology 2020 (10) 138-146.

Zerjal, T., Härtle, S., Gourichon, D., Guillory, V., Bruneau, N., Laloë, D., et al;Assessment of trade-offs between feed efficiency, growthrelated traits, and immune activity in experimental lines of layer chickens. Genet Sel Evol 2021; 53: 44. https://doi.org/10.1186/s12 711-021-00636-z.

Pluske, J. R., Kim, J. C., y Black, J. L. Manipulating the immune system for pigs to optimise performance. Animal Production Science 2018, 58(4), 666-680. https://doi.org/ 10.1071/AN17598.

Barba-Vidal, E, Martín-Orúe, S M, Castillejos, L. Practical aspects of the use of probiotics in pig production. Livestock Science, 2019 (223), 84-96. https://doi.org/10.1016/j.livsci.2019.02.017.

Silva-Guillen, Y V, Arellano, C, Boyd, R D, Martinez, G, y Van Heugten, E. Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J Animal Sci Biotechnol 20201(11) 22. https://doi.org/10.1186/s40104-020-0431-9.

Jiang, S, Quan, W, Luo, J, Lou, A, Zhou, X, Li, F, Shen, et al; Low-protein diets supplemented with glycine improves pig growth performance and meat quality. An untargeted metabolomic analysis. Front. Vet. Sci., 2023 (10) 1170573 https://doi.org/10.3389/fvets.2023.1170573.

Wang, F, Yin, Y, Wang, Q, Xie, J, Fu, C, Guo, H, et al;. Effects of dietary alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. Journal of Animal Physiology and Animal Nutrition. 2023(3) 107, 3:878- 886. https://doi.org/10.1111/jpn.13797.

Goecke NB, Kobber M, Kusk TK, Hjulsager CK, Pedersen KS, Kristensen CS,. Objective pathogen monitoring in nursery and finisher pigs by monthly laboratory diagnostic testing.Objective pathogen monitoring in nursery and finisher pigs by monthly laboratory diagnostic testing. Porc Health Manag 2020 (6), 23. https://doi.org/10.1186/s40813-020-00161-3.

Ruggeri J, Salogni C, Giovannini S, Vitale N, Boniotti MB, Corradi A, et al. Association Between Infectious Agents and Lesions in PostWeaned Piglets and Fattening Heavy Pigs with Porcine Respiratory Disease Complex(PRDC). Front. Vet. Sci. 2020 (7):636 https://doi:10.3389/ fvets.2020.00636.

Paz, Y, Herráez, P, Quesada, Ó, G, C, Díaz, J, Del, E, Plamenova, E. et al.Assessment of Lung Disease in Finishing Pigs at Slaughter: Pulmonary Lesions and Implications on Productivity Parameters. Animals. 2021; 11 (12):3604. https://doi.org/10.3390/ani11123604.

Przyborowska-Zhalniarovich, P, Maes, D, Otrocka-Domagaa, I, y Padzior-Czapula,. Association between Enzootic Pneumonia-Like Lung Lesions and Carcass Quality and Meat pH Value in Slaughter. Animals. 2023; 13(13):2210. https://doi.org/10.3390/ani13132210.

FAO. The FAO Action Plan on Antimicrobial Supporting innovation and resilience in food and agriculture sectors [en línea]. Rome, Italia; 22 febrero 2021 [Citado 19 diciembre 2023]. Disponible en: https://doi.org/10.4060/cb5545.

Hernando-Amado S, Coque TM, Baquero F, y Martínez JL. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 2019;4(9):1432-42. https://doi.org/10.1038/s41564-019-0503-9.

MINAG. Resolución 537/2020, Reglamento del Decreto-Ley 137 “De la Medicina Veterinaria” (GOC-2021-135-O11). Gaceta Oficial de la

República de Cuba No 11, 29 enero 2020, Páginas 434-532. [Citado 19 diciembre 2023]. Disponible en: https://www.gacetaoficial.gob. cu/es/gaceta-oficial-no-11-ordinaria-de-2021

Stygar AH, Chantziaras I, Toppari I, Maes D, y Niemi JK. High biosecurity and welfare standards in fattening pig farms are associated with reduced antimicrobial use.Animal. 2020; 14(10):2178-2186. https://doi.org/10.1017/S1751731120000828.

Artículos más leídos del mismo autor/a

> >>