Termoestabilidad del ADN deshidratado de Mycoplasma gallisepticum

Contenido principal del artículo

Arianna Duque-Ortiz
Damarys Relova-Vento
Anisleidys Perez-Castillo
Yaima Burger-Pulgarón
Evelyn Lobo-Rivero

Resumen

La preservación y el almacenamiento del material genético son de vital interés, sobre todo para micoplasmas, ya que se conoce que los métodos de conservación tradicionales reportados para estas especies no son completamente efectivos. El diagnóstico de estos microorganismos se realiza por métodos clásicos y moleculares, entre estos últimos se encuentra la reacción en cadena de la polimerasa (PCR). Uno de los puntos críticos de este ensayo lo constituye la estabilidad del ácido desoxirribonucleico (ADN). El objetivo de este trabajo fue evaluar la termoestabilidad de fragmentos amplificados por PCR, a partir de ADN deshidratado, del gen ARNr 16S para la detección de la clase Mollicutes y de los genes ARNr 16S y mgc2 para el diagnóstico de M. gallisepticum. El producto de cada extracción de ADN se deshidrató y conservó a 4, 20 y 37ºC por un periodo de 90 días. La estabilidad en el tiempo de las diferentes regiones de diagnóstico se evaluó mediante la amplificación con el uso del PCR. Los resultados mostraron que el ADN de M. gallisepticum es termoestable a temperatura ambiente por un periodo de hasta 90 días. Además, se comprobó que la pureza del ADN extraído no afecta la estabilidad del mismo cuando este se conserva deshidratado. Los resultados evidenciaron que conservar el ADN de M. gallisepticum deshidratado permite su almacenamiento y traslado sin altos costos y sin afectar la calidad de las muestras para el diagnóstico.

Detalles del artículo

Cómo citar
1.
Duque-Ortiz A, Relova-Vento D, Perez-Castillo A, Burger-Pulgarón Y, Lobo-Rivero E. Termoestabilidad del ADN deshidratado de Mycoplasma gallisepticum. Rev. Salud Anim. [Internet]. 7 de junio de 2018 [citado 14 de noviembre de 2024];39(3). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/914
Sección
ARTÍCULOS ORIGINALES

Citas

The Molecular Genetics Company.DNA Storage and Quality. Oxford Gene Technology ™. 2011. Disponible en: http://www.ogt.co.uk/resources/literature/403_dna_storage_and_quality.

Biomatrica. DNAstable, TheBiostability Company. Disponible en: http://www.biomatrica.com/dnastable.php. (Consultado: 17 de Octubre 2013).

Nisoli C, Bishop AR. Thermomechanics of DNA: Theory of thermal stability under load. Phys Rev Lett. 2011;107:068102.

Ivanova NV. Protocols for dry DNA storage and shipment at room temperature. Mol Ecol Resour. 2013;13(5):890-898.

Demina IA, Serebryakova MV, Ladygina VG, Rogova MA, Zgoda VG, Korzhenevskyi DA, Govorun VM. Proteome of the bacterium Mycoplasma gallisepticum. Biochemistry (Mosc) 2009;74:165-174.

Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, et al.Core proteome of the minimal cell: comparative proteomics of three mollicute species. PLoS One. 2011;6:e21964.

Gorbachey A, Fisunov G, Izraelson M, Evsyutina D, Mazin P, et al. DNA repair in Mycoplasma gallisepticum. BMC Genomics. 2013;14:726.

Kamashev D, Oberto J, Serebryakova M, Gorbachev A, Zhukova Y, et al. Mycoplasma gallisepticum Produces a Histone-like Protein That Recognizes Base Mismatches in DNA. Biochemistry. 2011;50(40):8692-8702.

Maier T, Schmidt A, Güell M. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst. 2011; 7:1-12.

Howlett SE, Castillo HS, Gioeni LJ, Robertson JM, Donfack J. Evaluation of DNA stable for DNA storage at ambient temperature. Forensic SciInt Genet. 2014;8(1):170-178. doi: 10.1016/j.fsigen.2013.09.003.

Liu X, Li Q, Wang X, Zhou X, He X, et al. Evaluation of DNA/RNA shells for room temperature nucleic acids storage. Biopreserv Biobank. 2015;13(1):49-55. doi: 10.1089/bio.2014.0060.

Mee BC, Carroll P, Donatello S, Connolly E, Griffin M, et al. Maintaining Breast Cancer Specimen Integrity and Individual or Simultaneous Extraction of Quality DNA, RNA, and Proteins from Allprotect-Stabilized and Nonstabilized Tissue Samples. Biopreserv Biobank. 2011;9:389-398.

Santa Lucia J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences. USA 95. 1998;1460-1465.

Knebelsberger T, Steoger I. DNA Extraction, Preservation and Amplification. In: DNA Barcodes Methods and Protocols (eds Kress J & Erickson D). Humana Press, NY. 2012; 311-338.

Moscoso H, Thayer SG, Hofacreb CL, Kleven SH. Inactivation, storage, and PCR detection of Mycoplasma on FTA filter paper. Avian Dis. 2004;48:841-850.

Jordan FTW: Recovery and identification of avian mycoplasmas. Methods in Mycoplasmology. 1983;2:69-79.

Fernández C, Chávez Y. Aplicación de la Reacción en Cadena de la Polimerasa para la detección de micoplasmas en cultivos celulares. Rev Salud Anim.1999;18(1):31-34.

Ley DH. Mycoplasma gallisepticum infection. In: Diseases of Poultry, Eleventh Edition, Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald LR, Swayne DE, eds. Iowa State University Press, Iowa, USA. 2003;722-744.

Marois C, Dufour-GesbertF, KempfI. Polymerase chain reaction for detection of Mycoplasma gallisepticum in environmental samples. Avian Pathol. 2002;31:163-168.

Relova D, Peréz L, Pereira C. Estabilidad de los genes M y HA comúnmente empleados en el diagnóstico del virus de influenza aviar. Tesis en opción al Grado de Master en Microbiología Veterinaria. CENSA. 2012.

Van Kuppeveld F, Johansson K, Galama J, Kissing J, Bolske G, Van der Logt J, Melchers W. Detection of Mycoplasma Contamination in cell culture by Mycoplasma Group-Specific PCR. Applied and Environmen Microbiol. 1994;60(1):149-152.

Hnatow LL, Keeler CL, Tessmer LL, Czymmek K, Dohms JE. Characterization of MGC2, a Mycoplasma gallisepticum cytadhes in with homology to the Mycoplasma pneumoniae 30-kilodalton protein P30 and Mycoplasma genitalium P32. Infect Immun. 1998;66:3436-3442.

Lauerman LH. Mycoplasma PCR Assays. In: Nucleic amplification assays for diagnosis of animal diseases. American Association of Veterinary Laboratory Diagnosticians, Auburn, AL. 1998;41-52.

Farmacopea Europea 8.0: Methods of analysis. Mycoplasmas. Appendix 2.6.7.2012

Seelenfreund E, Robinson WA, Amato CM, Tan ACh, Kim J, Robinson SE. Long Term Storage of Dry versus Frozen RNA for Next Generation Molecular Studies. Plos One. 2014;9(11):e111827. doi:10.1371/jornal.phone.0111827.

Bonnet J, Colotte M, Coudy D, Couallier V, Portier J, Morin B, Tuffet S. Chain and conformation stability of solid-state DNA: implications for room temperature storage. Nucleic Acids Research. 2009;38(5):1531-1546. doi:10.1093/nar/gkp1060.

Dualde JT, Sánchez A, Prats-van der Ham M, Gómez-Martín A, Paterna A, Corrales JC, de la Fe C, Contreras A, Amores J. Sensitivity of two methods to detect Mycoplasma agalactiae in goatmilk. Vet J. 2015; 68(1):21. doi:10.1186/s13620-015-0049.

Lee SB, Clabaugh KC, Silva B, Odigie KO, Coble MD, et al. Assessing a novel room temperature DNA storage medium for forensic biological samples. Forensic SciInt Genet. 2012;6(1):31-40.

Hernandez GE, Mondala TS, Steven R. Head. Assessing a novel room temperature RNA storage medium for compatibility in microarray gene expression analysis. Biotechniques. 2009;47(2): 667-670.

Wan E, Akana M, Pons J, Chen J, Musone S, et al. Green technologies for room temperature nucleic acid storage. Curr Issues Mol Biol. 2009;(12):135-142.

Barbeyrac B, Bebear C, Taylor-Robinson D.PCR: Preparation of DNA from clinical specimens. En: Tully JG, Razin S, editores. Molecular and diagnostic procedures in Mycoplasmology. Vol. II. New York: Academic Press Inc. 1996;61-74

Amores J, Corrales JC, Martín AG, Sánchez A, Contreras A, de la Fe C. Comparison of culture and PCR to detect Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in ear swabs taken from goats. Vet Microbiol. 2010;140(1-2):105-108.

Artículos más leídos del mismo autor/a

> >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.