Tipificación multilocus de secuencias aplicada a la caracterización molecular de hemoparásitos en el ganado bovino

Contenido principal del artículo

Adrian Alberto Díaz-Sánchez
Siomara Martínez-Marrero
Belkis Corona-González

Resumen

Los marcadores moleculares son valiosas herramientas en la investigación de la diversidad genética, la estructura poblacional y evolutiva de importantes agentes infecciosos, y tienen un enorme impacto en el diseño e implementación de estrategias de control. Para la tipificación de microorganismos patógenos se han desarrollado varios métodos, los cuales difieren en el poder discriminativo, la reproducibilidad y la facilidad de interpretación. La tipificación multilocus de secuencias se propuso en 1998 como un método universal y definitivo para la caracterización de bacterias, utilizando el patógeno Neisseria meningitidis como objeto de estudio. Actualmente, se cuenta con un número cada vez mayor de protocolos de tipificación multilocus de secuencias desarrollados y empleados en investigaciones epidemiológicas a diferentes escalas, así como en estudios de biología y estructura de distintas poblaciones microbianas, análisis de patogenicidad y evolución bacteriana. En el presente trabajo se exponen, de forma general, los principales esquemas de tipificación basados en esta metodología para el estudio de hemoparásitos que afectan el ganado bovino.

Detalles del artículo

Cómo citar
1.
Díaz-Sánchez AA, Martínez-Marrero S, Corona-González B. Tipificación multilocus de secuencias aplicada a la caracterización molecular de hemoparásitos en el ganado bovino. Rev. Salud Anim. [Internet]. 19 de junio de 2018 [citado 7 de enero de 2025];40(1). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/938
Sección
ARTÍCULO RESEÑA

Citas

Vazquez JA, Berron S. Multilocus sequence typing: the molecular marker of the Internet era. Enferm Infec Micr Cl. 2004;22(2):113-120.

Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences. 1998;95(6):3140-145.

Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiol. 2012;158(4):1005-1015.

Aires-de-Sousa M, Boye K, de Lencastre H, Deplano A, Enright MC, Etienne J, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol. 2006;44(2):619-621.

Lindstedt BA. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis. 2005;26(13):2567-2582.

Platt S, Pichon B, George R, Green J. A bioinformatics pipeline for high-throughput microbial multilocus sequence typing (MLST) analyses. Clin Microbiol Infec. 2006;12(11):1144-1146.

Ibarz Pavon AB, Maiden MC. Multilocus sequence typing. Method Mol Biol. 2009;551:129-140.

Maiden MC. High-throughput sequencing in the population analysis of bacterial pathogens of humans. Int JMed Microbiol. 2000;290(2):183-190.

Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561-588.

Elberse KE, Nunes S, Sa-Leao R, van der Heide HG, Schouls LM. Multiple-locus variable number tandem repeat analysis for Streptococcus pneumoniae: comparison with PFGE and MLST. PloS One. 2011;6(5):e19668.

Vergnaud G, Pourcel C. Multiple locus variable number of tandem repeats analysis. Method Mol Biol. 2009;551:141-158.

Li W, Raoult D, Fournier P-E. Bacterial strain typing in the genomic era. FEMS Microbiol Rev. 2009;33(5):892-916.

Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595.

Kocan KM, de la Fuente J, Blouin EF, Coetzee JF, Ewing SA. The natural history of Anaplasma marginale. Vet Parasitol. 2010;167(2-4):95-107.

de la Fuente J, Van Den Bussche RA, Garcia-Garcia JC, Rodriguez SD, Garcia MA, Guglielmone AA, et al. Phylogeography of New World isolates of Anaplasma marginale based on major surface protein sequences. Vet Microbiol. 2002;88(3):275-285.

da Silva JB, Dos Santos PN, de Santana Castro GN, da Fonseca AH, Barbosa JD. Prevalence survey of selected bovine pathogens in water buffaloes in the north region of Brazil. J Parasitol Res. 2014:Article ID 603484. doi:10.1155/2014/603484

Lew AE, Bock RE, Minchin CM, Masaka S. A msp1alpha polymerase chain reaction assay for specific detection and differentiation of Anaplasma marginale isolates. Vet Microbiol. 2002;86(4):325-335.

Estrada-Pena A, Naranjo V, Acevedo-Whitehouse K, Mangold AJ, Kocan KM, de la Fuente J. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biol. 2009;7:57.

Guillemi EC, Ruybal P, Lia V, Gonzalez S, Lew S, Zimmer P, et al. Development of a multilocus sequence typing scheme for the study of Anaplasma marginale population structure over space and time. Infect Get Evol. 2015;30:186-194.

Ruybal P, Moretta R, Perez A, Petrigh R, Zimmer P, Alcaraz E, et al.Genetic diversity of Anaplasma marginale in Argentina. Vet Parasitol. 2009;162(1-2):176-180.

Adakal H, Meyer DF, Carasco-Lacombe C, Pinarello V, Allegre F, Huber K, et al.MLST scheme of Ehrlichia ruminantium: genomic stasis and recombination in strains from Burkina-Faso. Infect Get Evol. 2009;9(6):1320-1328.

Vitorino L, Chelo IM, Bacellar F, Ze-Ze L. Rickettsiae phylogeny: a multigenic approach. Microbiol. 2007;153:160-168.

Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002;296(5577):2376-9.

Sonthayanon P, Peacock SJ, Chierakul W, Wuthiekanun V, Blacksell SD, Holden MT, et al. High rates of homologous recombination in the mite endosymbiont and opportunistic human pathogen Orientia tsutsugamushi. PLoS Neglect TropD. 2010;4(7):e752.

Huhn C, Winter C, Wolfsperger T, Wuppenhorst N, Strasek Smrdel K, Skuballa J, et al. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PloS One. 2014;9(4):e93725.

Dumler JS, Barbet AF, Bekker C, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 'HGE agent' as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol. 2001;51(6):2145-2165.

Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet Parasitol. 2010;167(2-4):108-122.

Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29(2):341-355.

Ismail N, Bloch KC, McBride JW. Human ehrlichiosis and anaplasmosis. Clin Lab Med. 2010;30(1):261-292.

de la Fuente J, Estrada-Pena A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for Infection of ticks and vertebrate hosts. Trends Microbiol. 2016;24(3):173-180.

Rar V, Golovljova I. Anaplasma, Ehrlichia, and "Candidatus Neoehrlichia" bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011;11(8):1842-1861.

Scharf W, Schauer S, Freyburger F, Petrovec M, Schaarschmidt-Kiener D, Liebisch G, et al. Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J Clin Microbiol. 2011;49(3):790-796.

Rymaszewska A. Divergence within the marker region of the groESL operon in Anaplasma phagocytophilum. Eur JClin Microbiol InfDis. 2008;27(11):1025-1036.

Strašek Smrdel K, von Loewenich FD, Petrovec M, Avšic Županc T. Diversity of ankA and msp4 genes of Anaplasma phagocytophilum in Slovenia. Ticks Tick-borne Dis. 2015;6(2):164-166.

Tveten AK. Prevalence and Diversity among Anaplasma phagocytophilum Strains Originating from Ixodes ricinus Ticks from Northwest Norway. J Pathogens. 2014:824897. doi: 10.1155/2014/824897 824-897.

Allsopp BA. Natural history of Ehrlichia ruminantium. Vet Parasitol. 2010;167(2-4):123-135.

Mukhebi AW, Chamboko T, O'Callaghan CJ, Peter TF, Kruska RL, Medley GF, et al. An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Prev Vet Med. 1999;39(3):173-189.

Allsopp MT, Louw M, Meyer EC. Ehrlichia ruminantium: an emerging human pathogen? Ann Acad Sci. 2005;1063:358-360.

Adakal H, Stachurski F, Konkobo M, Zoungrana S, Meyer DF, Pinarello V, et al. Efficiency of inactivated vaccines against heartwater in Burkina Faso: impact of Ehrlichia ruminantium genetic diversity. Vaccine. 2010;28(29):4573-4580.

Raliniaina M, Meyer DF, Pinarello V, Sheikboudou C, Emboule L, Kandassamy Y, et al.Mining the genetic diversity of Ehrlichia ruminantium using map genes family. Vet Parasitol. 2010;167(2-4):187-195.

Martinez D, Vachiery N, Stachurski F, Kandassamy Y, Raliniaina M, Aprelon R, et al. Nested PCR for detection and genotyping of Ehrlichia ruminantium: use in genetic diversity analysis. Ann Acad Sci. 2004;1026:106-113.

Adakal H, Gavotte L, Stachurski F, Konkobo M, Henri H, Zoungrana S, et al. Clonal origin of emerging populations of Ehrlichia ruminantium in Burkina Faso. Infect Genet Evol. 2010;10(7):903-912.

Nakao R, Magona JW, Zhou L, Jongejan F, Sugimoto C. Multi-locus sequence typing of Ehrlichia ruminantium strains from geographically diverse origins and collected in Amblyomma variegatum from Uganda. Parasites Vector. 2011;4:137.

Almeria S, Castella J, Ferrer D, Ortuno A, Estrada-Pena A, Gutierrez JF. Bovine piroplasms in Minorca (Balearic Islands, Spain): a comparison of PCR-based and light microscopy detection. Vet Parasitol. 2001;99(3):249-259.

Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitol. 2004;129 Suppl:S247-69.

Shkap V, de Vos AJ, Zweygarth E, Jongejan F. Attenuated vaccines for tropical theileriosis, babesiosis and heartwater: the continuing necessity. Trends Parasitol. 2007;23(9):420-426.

Guillemi E, Ruybal P, Lia V, Gonzalez S, Farber M, Wilkowsky SE. Multi-locus typing scheme for Babesia bovis and Babesia bigemina reveals high levels of genetic variability in strains from Northern Argentina. Infect Genet Evol.2013;14:214-222.

Simuunza M, Bilgic H, Karagenc T, Syakalima M, Shiels B, Tait A, et al. Population genetic analysis and sub-structuring in Babesia bovis. Mol Biochem Parasitol. 2011;177(2):106-115.

Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al.Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Neglect Trop D. 2011;5(6):e1049.

Chan MS, Maiden MC, Spratt BG. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics. 2001;17(11):1077-83.

Artículos más leídos del mismo autor/a