Effect of Thymus vulgaris essential oil on cell permeability of Salmonella enterica

Main Article Content

Annie Rubio Ortega
María del Carmen Travieso Novelles
Yamilka Riverón Alemán
Ailin Martínez Vasallo
Ivette Espinosa Castaño
Oriela Pino Pérez

Abstract

Infections with Salmonella spp. (salmonellosis) are the second leading cause of foodborne diseases worldwide. Given the growing emergence of antibiotic resistant strains, alternatives for their treatment are being sought. Essential oils are a powerful natural antibacterial resource that requires more knowledge in understanding the mechanism of action. The objective of this work was to determine the effect of the essential oil of Thymus vulgaris L. from plants cultivated in Cuba on the cell permeability of the Salmonella enterica. A reference strain and a β-lactam resistant strain were used in the trials. The effects of the essential oil on cell viability at the minimum inhibitory concentration (MIC) were determined through cell death time. The action of the essential oil on cell integrity was evidenced through bacteriolysis, loss of absorbent cell content and total proteins released. The essential oil of T. vulgaris at MIC caused cell death in one hour of contact for both strains. In addition, the release of absorbent cell components at 260 nm and the release of total proteins from both strains by the action of the essence were demonstrated within two hours of treatment, without causing cell lysis. The cytoplasmic membrane is identified as a possible site of action of this Cuban essence on S. enterica, from the release of cell components, which implies structural changes at cell level. The essential oil of T. vulgaris is a promising candidate for the development of antibacterial products for the control of salmonellosis.

Article Details

How to Cite
1.
Rubio Ortega A, Travieso Novelles M del C, Riverón Alemán Y, Martínez Vasallo A, Espinosa Castaño I, Pino Pérez O. Effect of Thymus vulgaris essential oil on cell permeability of Salmonella enterica. Rev. Salud Anim. [Internet]. 2021 Jan. 8 [cited 2024 Nov. 24];42(3). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/1115
Section
ARTÍCULOS ORIGINALES

References

OMS. Estimaciones de la OMS sobre la carga mundial de enfermedades de transmisión alimentaria. Vol. 14, World Health Organization. 2015.

Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL. Salmonella enterica infections in the United States and assessment of coefficients of variation: A Novel approach to identify epidemiologic characteristics of individual serotypes, 1996-2011. PLoS One. 2015;10(12):1-11.

Dougnon TV, Boris L, Deuguenon E, Hounmanou G, Agbankpe J, Amadou A, et al. Pathogenicity, epidemiology and virulence factors of Salmonella species: A review. Not Sci Biol. 2017;9(4):460.

Cardoen S, Van Huffel X, Berkvens D, Quoilin S, Ducoffre G, Saegerman C, et al. Evidence-based semiquantitative methodology for prioritization of foodborne zoonoses. Foodborne Pathog Dis. 2009;6(9):1083-1096.

Doyle M, Acheson D, Newland J, Dwelle T, Flynn W, Scott HM, et al. Enhancing practitioner knowledge about antibiotic resistance: connecting human and animal health. Food Prot Trends. 2016;36:390-394.

Morganti M, Bolzoni L, Pongolini S, Scaltriti E, Casadei G, Carra E, et al. Rise and fall of outbreak-specific clone inside endemic pulsotype of Salmonella 4,[5],12:i:-; insights from highresolution molecular surveillance in Emilia-Romagna, Italy, 2012 to 2015. Eurosurveillance. 2018;Special ed:42-52.

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2017;18(3):318-327.

Preedy VR. Essential oils in food preservation, flavor and safety. Academic Press; 2015.

Miladi H, Zmantar T, Kouidhi B, Chaabouni Y, Mahdouani K, Bakhrouf A, et al. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Vol. 104, Microbial Pathogenesis. 2017.

Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8:380.

Rubio-Ortega A, Travieso-Novelles M, Riverón- Alemán Y, Peña-Rodríguez J, Espinosa-Castaño I, Pino-Pérez O. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cuba sobre cepas de Salmonella enterica. Rev Salud Anim. 2018;40(3):1-10.

Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;312. doi: 10.3389/fmicb.2012.00012. e.

Pino O, Sánchez Y, Rojas MM, Abreu Y, Correa TM. Composición química y actividad antibacteriana del aceite esencial de Pimpinella anisum L. Rev Protección Veg. 2012;27(3):181-187.

Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. Epidemiol Infect. 1938;38(6):732-749.

Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914-1920.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. 2018.

Guinoiseau E, Luciani A, De Rocca Serra D, Quilichini Y, Berti L, Lorenzi V, et al. Primary mode of action of Cistus ladaniferus L. essential oil active fractions on Staphylococcus aureus strain. Adv Microbiol. 2015;5(5):881-890.

Swamy MK, Sayeed Akhtar M, Sinniah UR, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-Based Complement Altern Med. 2016;1-21.

Barton LL. Structural and functional relationships in prokaryotes. United States of America. 2005. pp.40-42.

Maillard JY. Bacterial target sites for biocide action. J Appl Microbiol Symp Suppl. 2002;92:16S-27S.

Bajpai VK, Sharma A, Moon B, Baek KH. Chemical composition analysis and antibacterial mode of action of Taxus cuspidata leaf essential oil against foodborne pathogens. J Food Saf. 2014;34:9-20.

Black J. Microbiology: principles and explorations. 8th ed. United States of America: John Wiley & Sons, Inc. 2012. pp. 60-67.

Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochim Biophys Acta - Biomembr. 1 de mayo de 2016;1858(5):980-987.

Kintz E, Heiss C, Black I, Donohue N, Brown N, Davies MR, et al. Salmonella enterica serovar Typhi lipopolysaccharide O-antigen modification impact on serum resistance and antibody recognition. Infect Immun. 2017;85:e01021-16. https://doi.org/10.1128/IAI.01021-16.

Reyes-Jurado F, Navarro-Cruz AR, Ochoa-Velasco CE, Palou E, López-Malo A, Ávila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit Rev Food Sci Nutr. 2019;1-10.

Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;46(2):446-475.

Calo JR, Crandall PG, O'Bryan CA, Ricke SC. Essential oils as antimicrobials in food systems - A review. Food Control. 2015;54:111-119.

Langeveld WT, Veldhuizen EJAA, Burt SA. Synergy between essential oil components and antibiotics: A review. Crit Rev Microbiol. 28 de febrero de 2014;40(1):76-94.

Saad NY, Muller CD, Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal. 2013.

Most read articles by the same author(s)

> >>