Ranking wild bird species and their settlements for avian influenza virus surveillance in Cuba
Main Article Content
Abstract
The aim of this study was to narrow down the number of wild bird species and settlements where avian influenza viruses (AIVs) could be found in Cuba. The species of greatest interest were identified and listed by analyzing the available ornithological information, their behavior and the prevalence reported in the literature. A prevalence-weighted index was developed to rank the wild bird species and their main settlements based on abundance and frequency of the species. Maximum abundance showed large differences among settlements, trending to increase during fall migration, as well as in wetlands with respect to other sampled settlements. The prevalence-weighted approach showed a distribution pattern with very high, high, moderate or low indexes for both species and settlements, which evidenced the distinguishing power of the method developed. A prominent use of Cuban ecosystems was observed during fall migration with respect to spring migration, attributed to the use of alternative migratory routes for return, not including Cuba. Blue-winged teal (Spatula discors) was markedly the foremost ranked species, while «Los Palacios» and «La Ciénaga de Zapata» were predicted as the two most appropriate settlements for AIV surveillance during fall and spring migration, respectively. The prospective deduced risk index could provide predictions about AIVs circulation in both species and settlements. In addition, this approach offers a new perspective for understanding the wild bird-poultry interface in Cuba.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
National Center for Animal and Plant Health (CENSA)References
Swayne D. E, Sims L, Brown I, Harder T, Stegeman A, Abolnik C, Delgado M, Awada L, Pavade G TG. Strategic challenges in the global control of High Pathogenicity Avian Influenza [Internet]. Paris; 2023. (90 SG/8). Disponible en: https://www.woah.org/app/uploads/2023/05/ a-90sg-8.pdf
Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian influenza and effective control strategies. Emerg Microbes Infect. 2023;12(1):2155072.
Agüero M, Monne I, Sánchez A, Zecchin B, Fusaro A, Ruano MJ, et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance. 2023;28(3).
Leguia M, Garcia-Glaessner A, Muñoz-Saavedra B, Juarez D, Barrera P, Calvo-Mac C, et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nat Commun. 2023;14(1):5489.
Ulloa M, Fernández A, Ariyama N, ColomRivero A, Rivera C, Nuñez P, et al. Mass mortality event in South American sea lions (Otaria flavescens) correlated to highly pathogenic avian influenza (HPAI) H5N1 outbreak in Chile. Vet Q. 2023;43(1):1-10.
Gilbertson B, Subbarao K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J Exp Med. 2023;220(8):e20230447.
Bevins SN, Pedersen K, Lutman MW, Baroch JA, Schmit BS, Kohler D, et al. Large-scale avian influenza surveillance in wild birds throughout the United States. PLoS One. 2014;9(8):e104360.
Ramey AM, Hill NJ, DeLiberto TJ, Gibbs SEJ, Camille Hopkins M, Lang AS, et al. Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. Vol. 86, Journal of Wildlife Management. 2022. p. e22171.
Globig A, Staubach C, Beer M, Köppen U, Fiedler W, Nieburg M, et al. Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007. Vol. 56, Transboundary and Emerging Diseases. 2009. p. 57-72.
Kent CM, Bevins SN, Mullinax JM, Sullivan JD, Prosser DJ. Waterfowl show spatiotemporal trends in influenza A H5 and H7 infections but limited taxonomic variation. Ecol Appl. 2023;33(7).
Ruiz S, Jimenez-Bluhm P, Di Pillo F, Baumberger C, Galdames P, Marambio V, et al. Temporal dynamics and the influence of environmental variables on the prevalence of avian influenza virus in main wetlands in central Chile. Transbound Emerg Dis. 2021;68(3).
Carter D, Link P, Walther P, Ramey A, Stallknecht D, Poulson R. Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Dis. 2019;63(sp1):165.
Wilcox BR, Knutsen GA, Berdeen J, Goekjian V, Poulson R, Goyal S, et al. Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity. PLoS One. 2011;6(9):e24010.
Hénaux V, Samuel MD. Avian influenza shedding patterns in waterfowl: Implications for surveillance, environmental transmission, and disease spread. J Wildl Dis. 2011;47(3):566-78.
Wille M, Lisovski S, Roshier D, Ferenczi M, Hoye BJ, Leen T, et al. Strong host phylogenetic and ecological effects on host competency for avian influenza in Australian wild birds. Proc R Soc B Biol Sci. 2023;290(1991).
Ramey AM, Reeves AB, Drexler JZ, Ackerman JT, De La Cruz S, Lang AS, et al. Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proc R Soc B Biol Sci. 2020;287(1934):20201680.
Machalaba CC, Elwood SE, Forcella S, Smith KM, Hamilton K, Jebara KB, et al. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity. Emerg Infect Dis. 2015;21(4):e1-7.
Franklin AB, Bevins SN, Ellis JW, Miller RS, Shriner SA, Root JJ, et al. Predicting the initial spread of novel Asian origin influenza A viruses
in the continental USA by wild waterfowl. Transbound Emerg Dis. 2019;66(2):705-14.
Aguilar S, Manica LT, Acosta M, Castro R, Hernández Z, González A, et al. SpatioTemporal Patterns of Waterbird Assemblages in Cuba’s South Coast Wetlands: Conservation Implications. Wetlands. 2020;40(2):407-19.
Acosta Cruz M, Mugica Valdés L. Evaluación general de las poblaciones de aves acuáticas de Cuba. 2006 [citado 5 de septiembre de 2019]; Disponible en: http:// repositorio.geotech.cu/xmlui/handle/1234/1403
RAMSAR. The List of Wetlands of International Importance. 2024 [citado 19 de julio de 2024]; (17):1-57. Disponible en: https://www.ram-
sar.org/sites/default/files/2023-08/sitelist.pdf
Aguilar S, Denis D, Parada A, Centro Nacional de Áreas Protegidas (Cuba) A, BirdLife International. Important Bird Area Programme. A, Serrano A, et al. Áreas importantes para la conservación de las aves en Cuba [Internet]. Editorial. García RC, editor. Habana: Centro Nacional de Áreas Protegidas (CNAP); 2010 [citado 2 de octubre de 2019]. 136 p. Disponible en: http:// repositorio.geotech.cu/jspui/handle/1234/2215
Blanco Rodríguez P, Vilella FJ, Oria BS. Waterfowl in Cuba: Current status and distribution. Wildfowl. 2014;0(0):498-511.
Acosta M, Mugica L, Blanco D, Löpez-Lanüs B, Antunes Dias R, Doodnath LW, et al. Birds of rice fields in the Americas. Waterbirds. 2010;33(SPEC.ISSUE.1):105-22.
Sievers BL, Hyder S, Claes F, Karlsson EA. Ingrained: Rice farming and the risk of zoonotic spillover, examples from Cambodia. One Heal. 2024;18:100696.
ONEI. Anuario Estadístico de Cuba 2022. Edición 2023.Capitulo 9. Agricultura, Ganadería, Silvicultura y Pesca. [Internet]. 2023. Disponible en: https://www.onei.gob.cu/ sites/default/files/publicaciones/2024-04/09-agro pecuario-2022_0.pdf
WAHIS. Notificación Evento 4895. 2023 [citado 3 de septiembre de 2024]. Cuba - Influenza de tipo A de alta patogenicidad (Inf. por los virus de la) (aves que no sean de corral, incluyendo las silvestres) (2017-) Informe de seguimiento 10 [FINAL]. Disponible en: https://wahis.woah.org/#/in-re view/4895? fromPage=event-dashboard-url
Mugica, L., Acosta, M., Aguilar, S., Hernández, N., Perez, A., De la Cruz, J.M., Hernández, Z.,
Castro, R., González, A., Navarro, D., Inguanzo, R., Rodriguez, A., Labrada O. & López M. Resultados del Programa de aves acuáticas y marinas. En: Hernández Ávila A, editor. Estado actual de la biodiversidad marino-costera en la región de los Archipiélagos del Sur de Cuba. La Habana, Cuba: Impresos Dominicanos s.r.l; 2014. p. 101-18.
Acosta M, Mugica L, Aguilar S. Protocolo para el monitoreo de aves acuáticas y Marinas. Proyecto PNUD/GEF. 2013.
Bevins SN, Dusek RJ, White CL, Gidlewski T, Bodenstein B, Mansfield KG, et al. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States. Sci Rep. 2016;6(1):28980.
Olson SH, Parmley J, Soos C, Gilbert M, Latorre-Margalef N, Hall JS, et al. Sampling Strategies and Biodiversity of Influenza A Subtypes in Wild Birds. PLoS One. 2014;9(3):e90826.
Olsen B, Munster VVJ, Wallensten A, Waldenström J, Osterhaus ADMEA, Fouchier RAM, et al. Global patterns of influenza a virus in wild birds. Science. 2006;312(5772):384-8.
Prosser DJ, Palm EC, Takekawa JY, Zhao D, Xiao X, Li P, et al. Movement analysis of free-grazing domestic ducks in Poyang Lake, China: a disease connection. Int J Geogr Inf Sci. 2016;30(5):869-80.
BirdsCaribbean. Caribbean Waterbird Census Program [Internet]. 2024 [citado 19 de julio de 2024]. Disponible en: https://www.birdscaribbean.org/our-work/carib bean-waterbird-censusprogram/
Trovão NS, Nolting JM, Slemons RD, Nelson MI, Bowman AS. The Evolutionary Dynamics of Influenza A Viruses Circulating in Mallards in Duck Hunting Preserves in Maryland, USA. Microorganisms. 2020;9(1):40.
Garrido, O.H. and Kirkconnell A. Aves de Cuba. Cornell University Press. Ithaca, New York. USA; 2011. 287 p.
Ramey AM, Poulson RL, González-Reiche AS, Wilcox BR, Walther P, Link P, et al. Evidence for seasonal patterns in the relative abundance of avian influenza virus subtypes in blue-winged teal (Anas discors). J Wildl Dis. 2014;50(4):916-22.
Delgado-Hernández B, Mugica L, Acosta M, Pérez F, Montano D de las N, Abreu Y, et al. Knowledge, Attitudes, and Risk Perception Toward Avian Influenza Virus Exposure Among Cuban Hunters. Front Public Heal. 2021;9:644786.
Wade D, Ashton-Butt A, Scott G, Reid SM, Coward V, Hansen RDE, et al. High pathogenicity avian influenza: targeted active surveillance of wild birds to enable early detection of emerging disease threats. Epidemiol Infect. 2023;151:e15.
Brown JD, Poulson R, Stallknecht DE. Wild bird surveillance for avian influenza virus. In Animal Influenza Virus. En: Spackman E, editor. Animal Influenza Virus. New York, NY: Humana Press; 2014. p. 69-81.
Brown JD, Poulson R, Stallknecht DE. Wild bird surveillance for avian influenza virus. Methods Mol Biol. 2014;1161:69-81.
Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, et al. Influenza A viruses of migrating wild aquatic birds in North America. Vector-Borne Zoonotic Dis. 2004;4(3):177-89.
Hénaux V, Samuel MD, Dusek RJ, Fleskes JP, Ip HS. Presence of Avian Influenza Viruses in Waterfowl and Wetlands during Summer 2010 in California: Are Resident Birds a Potential Reservoir? PLoS One. 2012;7(2):e31471.
Everest H, Hill S, Daines R, Sealy J, James J, Hansen R, et al. The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses. Viruses. 2020;12(6):673.
Everest H, Billington E, Daines R, Burman A, Iqbal M. The Emergence and Zoonotic Transmission of H10Nx Avian Influenza Virus Infections. MBio. 2021;12(5):10-1128.
Sit THC, Sun W, Tse ACN, Brackman CJ, Cheng SMS, Tang AWY, et al. Novel Zoonotic Avian Influenza Virus A(H3N8) Virus in Chicken, Hong Kong, China. Emerg Infect Dis. 2022;28(10):2009-15.
Stevens KB, Gilbert M, Pfeiffer DU. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: A spatial multicriteria decision analysis approach. Spat Spatiotemporal Epidemiol. 2013;4(1):1-14.
Montano-Valle D d/l Nieves, Percedo MI, Rodríguez SV, Fonseca O, Centelles Y, Ley O, Abreu Y, Delgado B, Capdevila Y, Regis-Santoro K, Quesada T, Peláez M AP. Influenza aviar. Oportunidades de mejora del sistema de vigilancia activa basado en riesgo en Cuba. Rev Salud Anim. 2020;42(3).
Pineda Medina, D., Miranda Cabrera, I., de las Nieves Montano Valle, D., Delgado Hernandez, B., Abreu Jorge, Y., Alfonso P. Stochastic simulation of the spread of highly pathogenic avian influenza in Cuba. Rev Salud Anim. 2023;45.
Montano Valle D de las N, Berezowski J, Delgado-Hernández B, Hernández AQ, Percedo-Abreu MI, Alfonso P, et al. Modeling transmission of avian influenza viruses at the human-animal-environment interface in Cuba. Front Vet Sci. 2024;11:1415559.
Teitelbaum CS, Casazza ML, Overton CT, Sullivan JD, Matchett EL, McDuie F, et al. Potential use of poultry farms by wild waterfowl in California’s Central Valley varies across space, times of day, and species: implications for influenza transmission risk. Ecography (Cop). 2024;
Cerda-Armijo C, de León MB, Ruvalcaba-Ortega I, Chablé-Santos J, Canales-del-Castillo R, Peñuelas-Urquides K, et al. High Prevalence of Avian Influenza Virus Among Wild Waterbirds and Land Birds of Mexico. Avian Dis. 3 de enero de 2020;64(2):135.
Simancas-Racines A, Cadena-Ullauri S, Guevara-Ramírez P, Zambrano AK, SimancasRacines D. Avian Influenza: Strategies to Manage an Outbreak. Pathogens. 2023;12(4):610.
Montano Valle D de las N, García OL, Hernandez BD, Abreu MIP, Pérez DQ, Silva LC, et al. Toward a One Health Surveillance System in Cuba: Co-Productive Stakeholder Engagement. One Heal Cases. 2023;ohcs20230024.