Toxindrome agudo por calabaza (Cucurbita maxima) en caninos

Contenido principal del artículo

Dumar Alexander Jaramillo Hernández
Doris Juliette Tamayo Rojas
Luz Natalia Pedraza Castillo
Anita Isabel Roque Rodríguez

Resumen

El objetivo de esta investigación fue aportar al conocimiento teórico-práctico clínico sobre la exposición dietaría aguda de caninos domésticos a la calabaza (Cucurbita maxima). En el estudio experimental de toxicidad aguda en caninos expuestos a la materia seca (Ms) del fruto de C. maxima, se estudiaron 24 caninos domésticos clínicamente sanos, que se distribuyeron aleatoriamente y de forma uniforme en cuatro grupos experimentales. A cada grupo se le midieron parámetros clínicos neurológicos a través de la escala modificada de coma de Glasgow y paraclínicos (hemograma completo, alanina aminotrasferasa, nitrógeno ureico sanguíneo y creatinina) una hora antes del inicio de la exposición (tiempo 0, T0). Posteriormente, a cada animal, en dependencia del grupo experimental, se le administró Ms del fruto C. maxima a razón de 500 mg/Kg (grupo A), 1 g/Kg (grupo B), 5 g/Kg (grupo C) vía oral (PO), así como 200 g del preparado cocido de C. maxima como dosis total PO (grupo D). Una hora después de la exposición (PE) (Tiempo 1- T1) y 24 horas PE (Tiempo 2 - T2), todos los parámetros paraclínicos mencionados fueron nuevamente medidos; así mismo el examen clínico neurológico fue ejecutado cada hora PE durante 24 horas. La exposición dietaría a la Ms del fruto de C. maxima en los caninos no generó diferencia significativa (p>0,05) cuando se compararon los datos clínicos neurológicos y paraclínicos obtenidos en cada grupo experimental del T0 versus T1 y T2. Por consiguiente, este estudio no evidenció indicio de toxicidad aguda clínica o subclínica a las dosis administradas en el modelo experimental, por lo que podemos concluir que no se generan eventos agudos de toxicidad clínica o subclínica en caninos clínicamente sanos expuestos al fruto de la C. maxima, en el rango de dosis de 500 mg Ms/Kg a 5 g Ms/Kg PO o 200 g de preparado cocido PO en 24 horas.

Detalles del artículo

Cómo citar
1.
Jaramillo Hernández DA, Tamayo Rojas DJ, Pedraza Castillo LN, Roque Rodríguez AI. Toxindrome agudo por calabaza (Cucurbita maxima) en caninos. Rev. Salud Anim. [Internet]. 2 de junio de 2021 [citado 14 de noviembre de 2024];43(1). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/1134
Sección
ARTÍCULOS ORIGINALES

Citas

FAO Plant Production and Protection Series No.26. NEGLECTED CROPS 1492 from a different perspective. Food and Agriculture Organization of the United Nations. Roma. 1994; 63-68. Consultado 09/13/2019 en http://www.fao.org/3/a-t0646e.pdf

Lestari B, Meiyanto E. A review: The emerging nutraceutical potential of pumpkin seeds. Indones. J Cancer Chemoprevent. 2018;9(2):92-101.

Srbinoska M, Hrabovski N, Rafajlovska V, Sinadinović-Fišer S. Characterization of the seed and seed extracts of the pumpkins Cucurbita maxima D. and Cucurbita pepo L. from Macedonia. Maced J Chem Chem En. 2012;31(1):65-78.

Stevenson D, Eller F, Wang L, Jane J, Wang T, Inglett G. Oil and Tocopherol content and composition of pumpkin seed oil in 12 Cultivars. J. Agric. Food Chem. 2007; 55(10): 4005-4013.

Bates D, Robinson R, Jeffrey C. Biological Propertiesand Utilization of the Cucurbitacaea. Cornell University Press:Cornell. 1983;356-361.

Rezig L, Chouaibi M, Msaada K, Hamdi S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products. 2012;37(1):82-87.

Montesano D, Blasi F, Simonetti S, Santini A, Cossignani L. Chemical and Nutritional Characterization of Seed Oil from Cucurbita maxima L. (var. Berrettina) Pumpkin. Foods. 2018; 7(3):30.

Srivastava M, Singh S. Anthelmintic activity of Cucurbita maxima (kaddu) seeds. Indian J Med Res. 1967;55(6): 629-632.

Vanaclocha B, Canigueral S. Fitoterapia, Vademécum de Prescripción, 4 ed., Barcelona: Masson. 2003;153-154.

Dreikorn K, Schonhofer P. Status of phytotherapeutic drugs in treatment of benign prostatic hyperplasia. Der Urologe. Ausg. A. 1995;34(2):119-129.

Medjakovic S, Hobiger S, Ardjomand-Woelkart K, Bucar F, Jungbauer A. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia. 2016;110: 150-156.

Gossell-Williams M, Lyttle K, Clarke T, Gardner M, Simon O. Supplementation with pumpkin seed oil improves plasma lipid profle and cardiovascular outcomes of female nonovariectomized and ovariectomized Sprague-Dawley rats. Phytother. Res. 2008;22(7):873-877.

Caili F, Huan S, Quanhong L. A Review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum Nutr. 2006;61(2):73-80.

Winkler C, Wirleitner B, Schroecksnadel K, Schennach H, Fuchs D. Extracts of pumpkin (Cucurbita pepo L.) seeds suppress stimulated peripheral blood mononuclear cells in vitro. Am J Immunol. 2005;1(1):6-11.

Amorim C, Marques A, Cordeiro R. Screening of the antimalarial activity of plants of the Cucurbitaceae family. Mem Inst Oswaldo Cruz. 1991;86(S2):177-180.

Yongabi K, Fon E, Lukong H; Chia P. A Preliminary assessment of Cucurbita Maxima leaves from Cameroon on haematological parameters in albino rats. J Mol Pharm Org Process Res. 2014;2(3):117

Villaseñor I, Lemon P, Palileo A, Bremner J. Antigenotoxic spinasterol from C.maxima flowers. Mutat. Res. Environ. Mutagen. 1996;360(2):89-93.

Yasir M, Sultana B, Nigam P, Owusu-Apenten R. Antioxidant and genoprotective activity of selected Cucurbitaceae seed extracts and LC-ESIMS/MS identifcation of phenolic components. Food Chem. 2016;199:307-313.

Villaseñor I, Domingo A. Anticarcinogenicity potential of spinasterol isolated from squash flowers. Teratog Carcinog Mutagen. 2000;20(3):99-105.

Enemali M, Bamidele T, Ubana M. Protective effect of ethanolic extract of Cucurbita maxima (PUMPKIN) leaf on acetaminophen-induced acute liver toxicity. J Pharmacognosy Phytother. 2018;10(8):142-148.

Mazzotti L, Criollos A, Diaz-Munoz A. Treatment of taeniasis with pumpkin seeds: simplified technic for the preparation of an aqueous extract. Rev Inst Salubr Enferm Trop. 1955;15(4):213-216.

Gonzales A, Bravo O, Garcia M, de la Santos R., del Tomas M, Pharmacological (anthelmintic) study of Cucurbita maxima seeds and their active principle, cucurbitin. Ann RealAcad Pharm. 1974;40:475-486.

Grzybek M, Kukula-Koch W, Strachecka A, Jaworska A, Phiri A, Paleolog J, Tomczuk K. Evaluation of anthelmintic activity and composition of pumpkin (Cucurbita pepo L.) seed extracts-in vitro and in vivo studies. Int J Mol Sci. 2016;17(9):1456.

Feitosa T, Vilela V, Athayde A, Braga F, Dantas E, Vieira V, de Melo L. Anthelmintic efficacy of pumpkin seed (Cucurbita pepo Linnaeus, 1753) on ostrich gastrointestinal nematodes in a semiarid region of Paraíba State, Brazil. Trop Anim. Health Prod. 2013;45(1):123-127.

Ayaz E, Gökbulut C, Coşkun H, Türker A, Özsoy S, Ceylan K. Evaluation of the anthelmintic activity of pumpkin seeds (Cucurbita maxima) in mice naturally infected with Aspiculuris tetraptera. J. Pharmacogenet. Phytother. 2015;7(9):189-193.

Lahon L, Khanikor H, Ahmad N, Gogoi A. Preliminary and pharmacological and anticestodal screening of Curcurbita maxima. Indian J Pharmacol. 1978;10(4):315-317.

Amorim A, Borba H. Ação anti-helmíntica de plantas VII - Triagem de 14 extratos brutos sobre Vampirolepsis nana em camundongos. Rev Bras Farm. 1993;74:2-3.

Magi E, Talvik H, Jarvis T. In vivo studies of the effect of medicinal herbs on the pig nodular worm (Oesophagostomum spp.). Helminthologia. 2005;42(2):67-69.

Abdel A. In vitro and in vivo anthelmintic activity of pumpkin seeds and pomegranate peels extracts against Ascaridia galli. BENI-SEUF UNIV. J Appl ScI. 2018;7(2):231-234.

Diaz-Obregon D, Lloja-Lozano L, Carbajal-Zuniga V. Preclinical studies of Cucurbita maxima (pumpkin seeds) a traditional intestinal antiparasitic in rural urban areas. Vet Gastroenterol Perú 2004;24(4):323-327.

Babaei A, Jafari A, Asadpour M, Shamsi M. Cucurbita maxima (pumpkin) seeds: scolicidal activity and preventive efficacy of its extract on experimental hydatidosis in mice. Iran J Basic Med. Sci. 2018;5(1):22-28.

Mahmoud L, Basiouny S, Dawoud H. Treatment of experimental heterophyiasis with two plant extracts, areca nut and pumpkin seed. J Egypt Soc Parasitol. 2002;32(2):501-516.

Martin M, Mathias E, McCorkle C. Ethnoveterinary Medicine: An annotated bibliography of community animal healthcare. ITDG publishing, London. 2001;15-21.

Lans C, Turner N, Khan T, Brauer G. Ethnoveterinary medicines used to treat endoparasites and stomach problems in pigs and pets in British Columbia, Canada. Vet Parasitol. 2007;148(3-4):325-340.

Bregstein J, Ganis C, Sonnett M. Chapter 5 - Emergency Medicine. In: Pediatric Secrets, Ed. Mosby, Fifth Edition. 2011;154-196.

Meyer D, Harvey J. El laboratorio clínico en Medicina Veterinaria. Interpretación y diagnóstico. Ed. Interamericana, 2nd ed. Buenos Aires, Argentina. 2000;38-78.

Shores A. Craniocerebral trauma. In: Kirk RW, ed. Current Veterinary Therapy X. Philadelphia, PA: WB Saunders. 1983;847-885.

Steyn D. The toxicity of pumpkin seed (Cucurbita pepo L.). Onderstepoort J Vet Sci Anim Ind. 1935;5(2):441-443.

Ferguson J, Fischer D, Metcalf R. A report of cucurbitacin poisonings in humans. Cucurbit Genetics Coop Report. 1983;36.

Stoewsand G, Jaworski A, Shannon S, Robinson R. Toxicologic response in mice fed Cucurbita fruit. J Food Prot. 1985;48(1):50-51.

Rymal K, Chambliss O, Bond M, Smith D. Squash containing toxic cucurbitacin compounds occurring in California and Alabama. J Food Prot. 1984;47(4):270-271.

Queiroz-Neto A, Mataqueiro M, Santana A, Alessi A. Toxicologic evaluation of acute and subacute oral administration of Cucurbitamaxima seed extracts to rats and swine. J Ethnopharmacol. 1994;43(1):45-51.

Cruz R, Meurer C, Silva E, Schaefer C, Santos A, Bella-Cruz A, Cechinel-Filho V. Toxicity evaluation of Cucurbita maxima seed extract in mice. Pharm Biol. 2006; 44(4): 301-303.

Chen J, Chiu M, Nie R, Cordell G, Qiu S. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep. 2005;22(3):386-399.

Ujváry I. Pest Control Agents from Natural Products. In: Hayes’ Handbook of Pesticide Toxicology. Elsevier. 2010;172-173.

Duncan K, Duncan M, Alley M. Cucurbitacin E induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmabitacin. 1996;52(10):1553-1560.

Watanabe K. West W. Calmodulin, activated cyclic nucleotide phosphodiesterase, microtubules, and vinca alkaloids. Fedn Proc. 1982;41(7):2292-2299.

Zuccolilli G. Capítulo 7. Bases fisiológicas de la neurotransmisión, Farmacología del Sistema Nervioso Central. In: Botana LM. Landoni MF. Martín-Jiménez T. Farmacología y terapéutica Veterinaria. 1raEd. Mc Graw Hill- Interamericana. Madrid, España. 2002;89-106.

Metcalf R. Chemical ecology of Diabroticites. In: “Novel Aspects of the Biology of Chrysomelidae” Jolivet P, Cox M, Petitpierre E. eds. Kluwer Academic, Dordrecht. 1994;153-169.

da Silva Júnior W, de Oliveira Pinheiro J, de França Almeida C, Rüdiger A, Barbosa E, Lima E, de Lima Á. Thermal behavior and thermal degradation kinetic parameters of triterpene α, β amyrin. J Therm Anal Calorim. 2017;27(2):1757-1766.

Rios J, Recio M, Maáñez S, Giner R. Natural triterpenoids as anti-inflammatory agents. Stud Nat Prod Chem. 2000;22(part C):93-143.

LeMen J, Buffard J, Provost R, Tiberghien P, Forgacs E, LaGrange O, Aurousseau M. Relations entre la structure de quelques cucurbitacines leur toxicite et leuractivite laxative. Chem Therapeut. 1969;6:459-465.

Da-Cheng W, Hua X, Dan L, Hui-yuan G, Hui C, Li-Jun W, Xu-Ming D. Purine-containing cucurbitane triterpenoids from Cucurbita pepo cv dayangua. Phytochemistry. 2008;69(6):1434-1438.

Phillis J, Wu P. The role of adenosine and its nucleotides in central synaptic transmission. Progr Neurobiol. 1981;16(3-4):187-239.

Schwabe U. General aspects of binding of ligands to adenosine receptors. In Regulatory Functions of Adenosine (Edited by Berne R M, RalI T W and Rublo R) Martlnus Nijhoff, Boston. 1983;77-96.

Kirkpatrick K, Richardson P. Adenosine receptor mediated modulation of acetylcholine release from striatal synaptosories. Br J Pharmacol. 1993;110(3):949-954.

Kurokawa M, Kirk I, Kirkpatrick K, Kase H, Richardson P. Inhibition by KF17837 of adenosine A2A receptor-mediated modulation of striatal GABA & ACh release. Br J Pharmacol. 1994;113(1):43-48.

Daly J, Shi D, Nikodijevic O, Jacobson K. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia. 1994;7(2):201-213.

Doke P, Tare H, Sherikar A, Shende V, Deore S, Dama G. Central nervous system stimulant effect of the oils obtained from seeds of Cucurbita maxima. Pharm Biol. 2011;1(1):30-36.

Griebel G, Saffroy-Spittler M, Misslin R, Remmy D, Vogel E, Bourguignon J. Comparison of the behavioural effects of an adenosine A1/A2-receptor antagonist, CGS 15943A, and an A1-selective antagonist, DPCPX. Psychopharmacology (Berl). 199;103(4):541-544.

Ferré S, Popoli P, Giménez-Llort L, Rimondini R, Müller CE, Strömberg I, Ögren SO, Fuxe K. Adenosine/dopamine interaction: implications for the treatment of Parkinson's disease. Parkinsonism Relat Disord. 2001;7(3):235-241.

Landoni M, Verde C. Capítulo 17. SNC. Fármacos estimulantes centrales y antiepilépticos. Farmacología del Sistema Nervioso Central. In: Botana L, Landoni M, Martín-Jiménez T. Farmacología y terapéutica Veterinaria. 1°Ed. Mc Graw Hill- Interamericana. Madrid, España. 2002. 208-220.

Kirschman J, Suber R. Recent food poisonings from cucurbitacin in traditionally bred squash. Food Chem Toxicol. 1989;27(8):555-556.

Szakács G, Váradi A, Özvegy-Laczka C, Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov Today. 2008;13(9-10):379-393.

Ruiz J. Factores fisiológicos que modifican la acción de los fármacos en medicina veterinaria. Rev Col Cienc Pec. 2001;14(1):36-48.

Fakioglu H, Gelvez J, Torbati D, Glover M, Olarte J, Camacho M, Wolfsdorf J. Aminophylline therapy during endotoxemia in anesthetized spontaneously breathing rats. Pharmacol Res. 2004;49(1):45-50.

Sciuto A, Strickkand P, Kennedy T, Gurtner G. Postexposure treatment with aminophylline protects against phosgene-induced acute lung injury. Exp Lung Res. 1977;23(4):317-332.

Hsu K, Wang D, Chang M, Wu C, Chen H. Pulmonary edema induced by phorbol myristate acetate is attenuated by compounds that increase intracellular cAMP. Res Exp Med. 1996;196(1):17-28.

Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, Schaefer S. Preconditioning limits mitochondrial Ca (2+) during ischemia in rat hearts: role of K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280(5):H2321-H2328.

Zhao Z, Sato H, Williams M, Fernandez A, Vinten-Johansen J. Adenosine A2-receptor activation inhibits neutrophil-mediated injury to coronary endothelium. Am J Physiol. 1996;271(4):H1456-1464.

Pamenter M, Dzal A, Milsom W. Adenosine receptors mediate the hypoxic ventilatory response but not the hypoxic metabolic response in the naked mole rat during acute hypoxia. Proc Biol Sci. 2015;282(1800):20141722.

Wei M, Kuukasjärvi P, Laurikka J, Honkonen E, Kaukinen S, Laine S, Tarkka M. Cardioprotective effect of adenosine pretreatment in coronary artery bypass grafting. Chest. 2001;120(3):860-865.

Bernásková K, Slamberová R, Mares P. GABA uptake blocker NNC-771 exibs marked anticonvulsant action in two cortical epileptic models in immature rats. Epilepsia. 1999;40(9):1184-1189.