Obtención por vía recombinante de dos citadhesinas de Mycoplasma gallisepticum

Contenido principal del artículo

José Antonio Agüero-Fernández
Andy Potter
José Pérez-Casal

Resumen

Los micoplasmas son los organismos autorreplicativos más simples que se conocen y se distinguen de otras bacterias por su pequeña talla y la total carencia de pared celular. La industria avícola está afectada por varias especies de micoplasmas, pero Mycoplasma gallisepticum (MG) es el más significativo económicamente. La adherencia de los micoplasmas a las células epiteliales respiratorias del hospedero constituye un paso crítico para la infección y posterior desarrollo de la enfermedad y se realiza mediante la interacción de lipoproteínas localizadas en la superficie de la bacteria con los receptores de las células del hospedero. Las proteínas GapA y CrmA son indispensables en este proceso de adherencia y en el desarrollo posterior de la enfermedad. En este trabajo se describe el clonaje molecular de los genes que codifican para ambas proteínas, así como su expresión, purificación y la antigenicidad de los productos obtenidos. Se clonó solo un fragmento del gen gapA, mientras que crmA se clonó en toda su extensión. En ambos casos las proteínas recombinantes se obtuvieron fragmentadas, lo que no afectó el proceso de purificación por Cromatografía de Afinidad por Metales Inmovilizados (IMAC). Al final del proceso los productos recombinantes conservaron sus propiedades antigénicas. Estos productos recombinantes podrían ser empleados en futuros estudios relacionados con los mecanismos de patogenicidad de esta bacteria.

Detalles del artículo

Cómo citar
1.
Agüero-Fernández JA, Potter A, Pérez-Casal J. Obtención por vía recombinante de dos citadhesinas de Mycoplasma gallisepticum. Rev. Salud Anim. [Internet]. 1 de agosto de 2018 [citado 8 de enero de 2025];40(2). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/970
Sección
ARTÍCULOS ORIGINALES

Citas

Evans J, Leigh S, Branton S, Collier S, Pharr G, Bearson S. Mycoplasma gallisepticum: Current and developing means to control the avian pathogen. J Appl Poultry Res. 2005;14(4):757-63.

Hennigan SL, Driskell JD, Ferguson-Noel N, Dluhy RA, Zhao Y, Tripp RA, et al. Detection and differentiation of avian mycoplasmas by surface-enhanced Raman spectroscopy based on a silver nanorod array. Appl Environ Microbiol. 2012;78(6):1930-5.

Gaunson JE, Philip CJ, Whithear KG, Browning GF. Age related differences in the immune response to vaccination and infection with Mycoplasma gallisepticum. Vaccine. 2006;24(10):1687-92.

Browning GF, Marenda MS, Noormohammadi AH, Markham PF. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet Microbiol. 2011;153(1-2):44-50.

Shimizu T. Pathogenic factors of mycoplasma. Nihon Saikingaku Zasshi Japanese JBacteriol. 2015;70(4):369-74.

Papazisi L, Frasca S Jr., Gladd M, Liao X, Yogev D, Geary SJ. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun. 2002;70(12):6839-45.

Markham PF, Glew MD, Sykes JE, Bowden TR, Pollocks TD, Browning GF, et al. The organisation of the multigene family which encodes the major cell surface protein, pMGA, of Mycoplasma gallisepticum. FEBS Lett. 1994;352(3):347-52.

Boguslavsky S, Menaker D, Lysnyansky I, Liu T, Levisohn S, Rosengarten R, et al. Molecular characterization of the Mycoplasma gallisepticum pvpA gene which encodes a putative variable cytadhesin protein. Infect Immun. 2000;68(7):3956-64.

Szczepanek SM, Tulman ER, Gorton TS, Liao X, Lu Z, Zinski J, et al. Comparative Genomic Analyses of Attenuated Strains of Mycoplasma gallisepticum. Infect Immun. 2010;78(4):1760-71.

Tulman ER, Liao X, Szczepanek SM, Ley DH, Kutish GF, Geary SJ. Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel North American house finch epizootic strain of Mycoplasma gallisepticum. Microbiol. 2012;158(Pt 8):2073-88.

Kang I, Kim D, Han K, Seo HW, Oh Y, Park C, et al. Optimized protocol for multiplex nested polymerase chain reaction to detect and differentiate Haemophilus parasuis, Streptococcus suis, and Mycoplasma hyorhinis in formalin-fixed, paraffin-embedded tissues from pigs with polyserositis. Can J Vet Res. 2012;76(3):195-200.

Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR protocols: a guide to methods and applications: Academic Press; 2012.

Scharf SJ. Cloning with PCR. PCR Protocols: A guide to methods and applications. 1990:84-91.

Froger A, Hall JE. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp. 2007;6:253. doi: 10.3791/253

Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual: Cold Spring Harbor Laboratory Cold Spring Harbor, NY; 1982.

Hellman U. Sample preparation by SDS/PAGE and in-gel digestion. Proteomics in functional genomics: Springer; 2000. p. 43-54.

Lauriére M. A semidry electroblotting system efficiently transfers both high-and low-molecular-weight proteins separated by SDS-PAGE. Anal Biochem. 1993;212(1):206-11.

Ishmael FT, Stellato C. Principles and applications of polymerase chain reaction: basic science for the practicing physician. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2008;101(4):437-43.

Zimmerman CU, Herrmann R, Rosengarten R. XerC-mediated DNA inversion at the inverted repeats of the UU172-phase-variable element of Ureaplasma parvum serovar 3. Microbiol Res. 2014;170:263-9.

Dordet-Frisoni E, Sagne E, Baranowski E, Breton M, Nouvel LX, Blanchard A, et al. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile. MBio. 2014;5(6):e01958.

Schurwanz N, Jacobs E, Dumke R. Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development. Infect Immun. 2009;77(11):5007-15.

Smiley BK, Minion FC. Enhanced readthrough of opal (UGA) stop codons and production of Mycoplasma pneumoniae P1 epitopes in Escherichia coli. Gene. 1993;134(1):33-40.

Minion FC, VanDyk C, Smiley BK. Use of an enhanced Escherichia coli opal suppressor strain to screen a Mycoplasma hyopneumoniae library. FEMS Microbiol Lett. 1995;131(1):81-5.

Kent BN, Foecking MF, Calcutt MJ. Development of a novel plasmid as a shuttle vector for heterologous gene expression in Mycoplasma yeatsii. J Microbiol Methods. 2012;91(1):121-7.

Simionatto S, Marchioro SB, Galli V, Luerce TD, Hartwig DD, Moreira AN, et al. Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing Mycoplasma hyopneumoniae genes in Escherichia coli. J Microbiol Methods. 2009;79(1):101-5.

Halbedel S, Stulke J. Tools for the genetic analysis of Mycoplasma. Int J Med Microbiol. 2007;297(1):37-44.

Zampini M, Stevens PR, Pachebat JA, Kingston-Smith A, Mur LA, Hayes F. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli. Scientific Reports. 2015;5:11302.

Blackburn MC, Petrova E, Correia BE, Maerkl SJ. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Nucleic Acids Res. 2016;44(7):e68.

Perez-Casal J, Prysliak T, Maina T, Wang Y, Townsend H, Berverov E, et al. Analysis of immune responses to recombinant proteins from strains of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia. Vet Immunol Immunopathol. 2015;168(1-2):103-10.

Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact. 2010;9:71.

Garcia-Fruitos E. Inclusion bodies: a new concept. Microb Cell Fact. 2010;9:80.

Schlager B, Straessle A, Hafen E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC biotechnology. 2012;12:95.

Roussel G, Tinti E, Perpete E, Michaux C. Refolding of SDS-denatured proteins using amphipathic cosolvents and osmolytes. Current protocols in protein science / editorial board, John E Coligan [et al]. 2013;Chapter 28:Unit28.5.

Yasser E, Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res. 2010;6(Suppl 2):S2.

de Alvarenga Mudadu M, Carvalho V, Leclercq SY. Nonclassically Secreted Proteins as Possible Antigens for Vaccine Development: A Reverse Vaccinology Approach. Appl Biochem Biotechnol. 2015;175(7):3360-70.

Madampage CA, Rawlyk N, Crockford G, Wang Y, White AP, Brownlie R, et al. Reverse vaccinology as an approach for developing Histophilus somni vaccine candidates. Biologicals. 2015;43(6):444-51.

Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18(5):109-16.

Shil PK, Kanci A, Browning GF, Markham PF. Development and immunogenicity of recombinant GapA(+) Mycoplasma gallisepticum vaccine strain ts-11 expressing infectious bronchitis virus-S1 glycoprotein and chicken interleukin-6. Vaccine. 2011;29(17):3197-205.

Shil PK, Kanci A, Browning G, Marenda MS, Noormohammadi AH, Markham PF. GapA+ Mycoplasma gallisepticum ts-11 has improved vaccine characteristics. Microbiol. 2011;157(Pt 6):1740-9.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.