Obtainment, via recombinant DNA, of two Mycoplasma gallisepticum cytadhesins

Main Article Content

José Antonio Agüero-Fernández
Andy Potter
José Pérez-Casal

Abstract

Mycoplasmas, known as the simplest self-replicating organisms, are distinguished phenotypically from other bacteria by their minute size and total lack of cell wall. The poultry industry is affected by several species of mycoplasmas but Mycoplasma gallisepticum (MG) is the most economically significant one. The attachment of mycoplasmas to the host respiratory epithelial cells constitutes a critical step in the pathway leading to infection and disease, and it is achieved by lipoproteins localized on the bacterial surface. GapA and CrmA proteins showed to be critical in this adhesion process, as well as in further disease development. In this work, the molecular cloning of these genes coding for both proteins, as well as their expression, purification and immunogenic response induced by the obtained products, are described. Only a fragment of gapA gene was cloned, while crmA was full lenfht cloned as designed. In both cases, the obtained recombinant proteins were fragmented but this fact did not affect the purification process by the Immobilized Metal Affinity Chromatography (IMAC). At the end of the process, the final products conserved their antigenic properties. These recombinant products could be used for future studies related to the pathogenic mechanisms of this bacterium.

Article Details

How to Cite
1.
Agüero-Fernández JA, Potter A, Pérez-Casal J. Obtainment, via recombinant DNA, of two Mycoplasma gallisepticum cytadhesins. Rev. Salud Anim. [Internet]. 2018 Aug. 1 [cited 2024 Nov. 22];40(2). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/970
Section
ARTÍCULOS ORIGINALES

References

Evans J, Leigh S, Branton S, Collier S, Pharr G, Bearson S. Mycoplasma gallisepticum: Current and developing means to control the avian pathogen. J Appl Poultry Res. 2005;14(4):757-63.

Hennigan SL, Driskell JD, Ferguson-Noel N, Dluhy RA, Zhao Y, Tripp RA, et al. Detection and differentiation of avian mycoplasmas by surface-enhanced Raman spectroscopy based on a silver nanorod array. Appl Environ Microbiol. 2012;78(6):1930-5.

Gaunson JE, Philip CJ, Whithear KG, Browning GF. Age related differences in the immune response to vaccination and infection with Mycoplasma gallisepticum. Vaccine. 2006;24(10):1687-92.

Browning GF, Marenda MS, Noormohammadi AH, Markham PF. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet Microbiol. 2011;153(1-2):44-50.

Shimizu T. Pathogenic factors of mycoplasma. Nihon Saikingaku Zasshi Japanese JBacteriol. 2015;70(4):369-74.

Papazisi L, Frasca S Jr., Gladd M, Liao X, Yogev D, Geary SJ. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect Immun. 2002;70(12):6839-45.

Markham PF, Glew MD, Sykes JE, Bowden TR, Pollocks TD, Browning GF, et al. The organisation of the multigene family which encodes the major cell surface protein, pMGA, of Mycoplasma gallisepticum. FEBS Lett. 1994;352(3):347-52.

Boguslavsky S, Menaker D, Lysnyansky I, Liu T, Levisohn S, Rosengarten R, et al. Molecular characterization of the Mycoplasma gallisepticum pvpA gene which encodes a putative variable cytadhesin protein. Infect Immun. 2000;68(7):3956-64.

Szczepanek SM, Tulman ER, Gorton TS, Liao X, Lu Z, Zinski J, et al. Comparative Genomic Analyses of Attenuated Strains of Mycoplasma gallisepticum. Infect Immun. 2010;78(4):1760-71.

Tulman ER, Liao X, Szczepanek SM, Ley DH, Kutish GF, Geary SJ. Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel North American house finch epizootic strain of Mycoplasma gallisepticum. Microbiol. 2012;158(Pt 8):2073-88.

Kang I, Kim D, Han K, Seo HW, Oh Y, Park C, et al. Optimized protocol for multiplex nested polymerase chain reaction to detect and differentiate Haemophilus parasuis, Streptococcus suis, and Mycoplasma hyorhinis in formalin-fixed, paraffin-embedded tissues from pigs with polyserositis. Can J Vet Res. 2012;76(3):195-200.

Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR protocols: a guide to methods and applications: Academic Press; 2012.

Scharf SJ. Cloning with PCR. PCR Protocols: A guide to methods and applications. 1990:84-91.

Froger A, Hall JE. Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp. 2007;6:253. doi: 10.3791/253

Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual: Cold Spring Harbor Laboratory Cold Spring Harbor, NY; 1982.

Hellman U. Sample preparation by SDS/PAGE and in-gel digestion. Proteomics in functional genomics: Springer; 2000. p. 43-54.

Lauriére M. A semidry electroblotting system efficiently transfers both high-and low-molecular-weight proteins separated by SDS-PAGE. Anal Biochem. 1993;212(1):206-11.

Ishmael FT, Stellato C. Principles and applications of polymerase chain reaction: basic science for the practicing physician. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2008;101(4):437-43.

Zimmerman CU, Herrmann R, Rosengarten R. XerC-mediated DNA inversion at the inverted repeats of the UU172-phase-variable element of Ureaplasma parvum serovar 3. Microbiol Res. 2014;170:263-9.

Dordet-Frisoni E, Sagne E, Baranowski E, Breton M, Nouvel LX, Blanchard A, et al. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile. MBio. 2014;5(6):e01958.

Schurwanz N, Jacobs E, Dumke R. Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development. Infect Immun. 2009;77(11):5007-15.

Smiley BK, Minion FC. Enhanced readthrough of opal (UGA) stop codons and production of Mycoplasma pneumoniae P1 epitopes in Escherichia coli. Gene. 1993;134(1):33-40.

Minion FC, VanDyk C, Smiley BK. Use of an enhanced Escherichia coli opal suppressor strain to screen a Mycoplasma hyopneumoniae library. FEMS Microbiol Lett. 1995;131(1):81-5.

Kent BN, Foecking MF, Calcutt MJ. Development of a novel plasmid as a shuttle vector for heterologous gene expression in Mycoplasma yeatsii. J Microbiol Methods. 2012;91(1):121-7.

Simionatto S, Marchioro SB, Galli V, Luerce TD, Hartwig DD, Moreira AN, et al. Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing Mycoplasma hyopneumoniae genes in Escherichia coli. J Microbiol Methods. 2009;79(1):101-5.

Halbedel S, Stulke J. Tools for the genetic analysis of Mycoplasma. Int J Med Microbiol. 2007;297(1):37-44.

Zampini M, Stevens PR, Pachebat JA, Kingston-Smith A, Mur LA, Hayes F. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli. Scientific Reports. 2015;5:11302.

Blackburn MC, Petrova E, Correia BE, Maerkl SJ. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering. Nucleic Acids Res. 2016;44(7):e68.

Perez-Casal J, Prysliak T, Maina T, Wang Y, Townsend H, Berverov E, et al. Analysis of immune responses to recombinant proteins from strains of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia. Vet Immunol Immunopathol. 2015;168(1-2):103-10.

Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E. Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact. 2010;9:71.

Garcia-Fruitos E. Inclusion bodies: a new concept. Microb Cell Fact. 2010;9:80.

Schlager B, Straessle A, Hafen E. Use of anionic denaturing detergents to purify insoluble proteins after overexpression. BMC biotechnology. 2012;12:95.

Roussel G, Tinti E, Perpete E, Michaux C. Refolding of SDS-denatured proteins using amphipathic cosolvents and osmolytes. Current protocols in protein science / editorial board, John E Coligan [et al]. 2013;Chapter 28:Unit28.5.

Yasser E, Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res. 2010;6(Suppl 2):S2.

de Alvarenga Mudadu M, Carvalho V, Leclercq SY. Nonclassically Secreted Proteins as Possible Antigens for Vaccine Development: A Reverse Vaccinology Approach. Appl Biochem Biotechnol. 2015;175(7):3360-70.

Madampage CA, Rawlyk N, Crockford G, Wang Y, White AP, Brownlie R, et al. Reverse vaccinology as an approach for developing Histophilus somni vaccine candidates. Biologicals. 2015;43(6):444-51.

Seib KL, Zhao X, Rappuoli R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18(5):109-16.

Shil PK, Kanci A, Browning GF, Markham PF. Development and immunogenicity of recombinant GapA(+) Mycoplasma gallisepticum vaccine strain ts-11 expressing infectious bronchitis virus-S1 glycoprotein and chicken interleukin-6. Vaccine. 2011;29(17):3197-205.

Shil PK, Kanci A, Browning G, Marenda MS, Noormohammadi AH, Markham PF. GapA+ Mycoplasma gallisepticum ts-11 has improved vaccine characteristics. Microbiol. 2011;157(Pt 6):1740-9.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.