Avian Influenza. Opportunities to improve the active surveillance system based on risk in Cuba

Main Article Content

Damarys de las Nieves Montano
María Irian Percedo
Silvio Vioel Rodríguez
Osvaldo Fonseca
Yosdany Centelles
Oshin Ley
Yandy Abreu
Beatriz Delgado
Yolanda Capdevila
Kleber Regis Santoro
Teresita Quesada
Manuel Peláez
Pastor Alfonso

Abstract

Continuously improving surveillance and control of avian influenza (AI) is a global priority given the continued presence of this threat at a global scale. The objective of this work was to identify opportunities to improve the active AI surveillance system established in Cuba. It was mapped with a resolution of 1 km2 using the multi-criteria geospatial analysis. Additionally, it was taken into account the existence of contiguity zones among poultry farms (< 3 km), where the diffusion of the causal agent could be favored in case of introduction. As a result, areas with a very high risk of occurrence were identified, either by exposure or diffusion, which was sometimes favored by the contiguity among commercial poultry farms. Based on these findings, it was possible to define the pre-existing criteria for targeting AI active surveillance, which could improve the detection capacity of eventual positive cases. Accuracy and management of the risk of spread is of great importance because it is often the main determinant of the magnitude of the epidemic. It is concluded that there are strategic areas of marked importance, towards which the main resources should be directed as a priority to strengthen both biosecurity and surveillance aimed at rapid alert.

Article Details

How to Cite
1.
de las Nieves Montano D, Irian Percedo M, Vioel Rodríguez S, Fonseca O, Centelles Y, Ley O, Abreu Y, Delgado B, Capdevila Y, Regis Santoro K, Quesada T, Peláez M, Alfonso P. Avian Influenza. Opportunities to improve the active surveillance system based on risk in Cuba. Rev. Salud Anim. [Internet]. 2021 Jan. 8 [cited 2024 Nov. 14];42(3). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/1112
Section
ARTÍCULOS ORIGINALES

References

WAHIS. Summary of Immediate notifications and Follow-ups. 2019.Disponible en: http://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Immsummary.

Bailey ES, Choi JY, Fieldhouse JK, Borkenhagen LK, Zemke J, Zhang D, et al. The continual threat of influenza virus infections at the human-animal interface. Evol Med Public Heal. 2018;(1):192-198.

Stevens KB, Gilbert M, Pfeiffer DU. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: A spatial multicriteria decision analysis approach. Spat Spatiotemporal Epidemiol. 2013;4:1-14.

León E, Duffy SJ, Stevenson MA, Lockhart C, Späth E. Sistema AVE de información geográfica para la asistencia en la vigilancia epidemiológica de la influenza Aviar, basado en el riesgo. FAO Animal Production and Health Manual. 2009. Disponible en: http://www.fao.org/3/i0943s/i0943s00.pdf

Stevens KB, Pfeiffer DU. Sources of spatial animal and human health data: Casting the net wide to deal more effectively with increasingly complex disease problems. Spat Spatiotemporal Epidemiol . 2015;13:15-29.

Ferrer E, Alfonso P, Ippoliti C, Abeledo M, Calistri P, Blanco P, et al. Development of an active risk-based surveillance strategy for avian influenza in Cuba. Prev Vet Med. 2014;116(1-2):161-167.

Alfonso P, Ferrer E, Abeledo M, Fonseca O, Fernández O, Percedo M,et al. Perfeccionamiento del sistema de vigilancia activa de la influenza aviar basado en el análisis de riesgo de su introducción al país. Anales de la Academia de Ciencias de Cuba. La Habana: Academia de Ciencias de Cuba. 2016. Disponible en: http://www.revistaccuba.sld.cu/index.php/revacc/article/view/550

MINAG. Programa de emergencia de la Influenza aviar. La Habana; 2016.

Paul MC, Goutard FL, Roulleau F, Holl D, Thanapongtharm W, Roger FL, et al. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia. Sci Rep. 2016;6:1-10.

Köksalan M, Wallenius J, Zionts S. Multiple criteria decision making : from early history to the 21st century. World Scientific. 2011. Disponible en: https://books.google.es/books.

Fuentes. El análisis multicriterio (MCDA) en la toma de decisiones. Página web PMFarma. 2018. Disponible en: http://www.pmfarma.es/articulos/2341-el-analisis-multicriterio-mcda-en-la-toma-de-decisiones.html.

Berumen S a, Llamazares F. La utilidad de los métodos de decisión multicriterio (como el AHP) en un entorno de competitividad creciente. Cuad Adm. 2007;20(34):65-87.

Zapata EI. Estimación de escenarios en el potencial de introducción, establecimiento y dispersión del agente causal de la Influenza Tipo “A”. Universidad autónoma de San Luis Potosí. 2018;16. Disponible en: https://ninive.uaslp.mx/xmlui/handle/i/5512

Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements ACA. Identifying factors associated with the spatial distribution of disease. En: Spatial Analysis in Epidemiology. Oxford University Press; 2008. p. 81-109. Disponible en: http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198509882.001.0001/acprof-9780198509882-chapter-7

CFSPH. Aviar Influenza The C for FS and PH. Influenza-Es. 2010;71-73. Disponible en: http://www.cfsph.iastate.edu/Factsheets/es/influenza-es.pdf

OIE. Vigilancia sanitaria de los animales terrestres. Codigo Sanitario Para Los Animales Terrestres. 2019;Capítulo 1(Artículo 1.4.1.):1-10. Disponible en: http://www.oie.int/index.php?id=169&L=2&htmfile=chapitre_1.1.4.htm

Alba A, Casal J, Napp S, Martin PAJ. Assessment of different surveillance systems for avian influenza in commercial poultry in Catalonia (North-Eastern Spain). Prev Vet Med . 2010;97(2):107-118.

Sanford B, Gongora V, Tortosa la Osa S, Elayiz A, Hammami P, Squarzoni C, et al. Development of GIS capacities in animal health in the Caribbean, application to the Avian Influenza risk mapping - the essential contribution of CaribVet. 2017.

Rodríguez SV, Alfonso P. Geospatial analysis for avian influenza risk appreciation in Cuba. 2018. Disponible en: http://www.informaticahabana.cu/en/node/4396

Flint PL, Pearce JM, Franson JC, Derksen DV. Wild bird surveillance for highly pathogenic avian influenza H5 in North America. Virol J. 2015;12(1):151.

Bengtsson D, Safi K, Avril A, Fiedler W, Wikelski M, Gunnarsson G, et al. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host? R Soc Open Sci. 2016;3(2):150-633.

Henning J, Pfeiffer DU, Stevenson M, Yulianto D, Priyono W, Meers J. Who Is Spreading Avian Influenza in the Moving Duck Flock Farming Network of Indonesia? Russell CJ, editor. PLoS One. 2016;11(3):e0152123.

Curran JM, Robertson ID, Ellis TM, Selleck PW, O’Dea MA. Variation in the Responses of Wild Species of Duck, Gull, and Wader to Inoculation with a Wild-Bird-Origin H6N2 Low Pathogenicity Avian Influenza Virus. Avian Dis. 2013;57(3):581-586.

Hotta K, Takakuwa H, Yabuta T, Ung TTH, Usui T, Nguyen HLK, et al. Antibody survey on avian influenza viruses using egg yolks of ducks in Hanoi between 2010 and 2012. Vet Microbiol. 2013;166(1-2):179-183.

Smith G, Dunipace S. How backyard poultry flocks influence the effort required to curtail avian influenza epidemics in commercial poultry flocks. Epidemics. 2011; (3)2:71-75.

Alkhamis M, Hijmans RJ, Al-Enezi A, Martínez-López B, Perea AM. The Use of Spatial and Spatiotemporal Modeling for Surveillance of H5N1 Highly Pathogenic Avian Influenza in Poultry in the Middle East. Avian Dis . 2016;60(1):146-155.

Paul MC, Gilbert M, Desvaux S, Rasamoelina, Andriamanivo H, Peyre M, et al. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar. PLoS ONE. 2014;9(7): e101958. doi:10.1371/journal.pone.0101958

Martin V, Pfeiffer DU, Zhou X, Xiao X, Prosser DJ, Guo F, et al. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China. Ferguson NM, editor. PLoS Pathog. 2011;7(3):e1001308.

Conan A, Goutard FL, Sorn S, Vong S. Biosecurity measures for backyard poultry in developing countries: a systematic review. BMC Vet Res. 2012;8(1):240.

Ippoliti C, Candeloro L, Savini L, Conte A, Gilbert M, Ayala J, et al. Combining multicriteria decision analysis and network-based model to assess the vulnerability of commercial Cuban poultry to avian influenza viruses. Front Vet Sci. 2019. https://www.frontiersin.org/10.3389/conf.fvets.2019.05.00110/event_abstract

Belkhiria J, Alkhamis MA, Martínez-López B. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways. Sci Rep . 2016;33161. doi: 10.1038/srep33161.

Blanco P, Sánchez B, Wiley JW. Recuperación de aves migratorias neárticas de los órdenes Falconiformes y Accipitriformes en Cuba. 2015. Disponible en: http://repositorio.geotech.cu/xmlui/handle/1234/256.

Correia-Gomes C, Sparks N. Exploring the attitudes of backyard poultry keepers to health and biosecurity. Prev Vet Med . 2020;104812.

Rimi NA, Sultana R, Muhsina M, Uddin B, Haider N, Nahar N, et al. Biosecurity Conditions in Small Commercial Chicken Farms, Bangladesh 2011-2012. Ecohealth. 2017;14(2):244-258.

Wang Y, Li P, Wu Y, Sun X, Yu K, Yu C, et al. The risk factors for avian influenza on poultry farms: A meta-analysis. Prev Vet Med . 2014;117(1):1-6.

USDA APHIS. HPAI Response Services V. Public Version. 2017. Final Repo. Disponible en: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/hpai/h7-hpai-lpai-finalreport.pdf

OIE. Infección por los virus de la Influenza Aviar. Código Sanitario para los Animales Terrestres. 2019;1.4(10.4.1.):174-175. Disponible en: https://www.oie.int/fileadmin/Home/esp/Health_standards/tahc/current/chapitre_avian_influenza_viruses.pdf

Frías-Salcedo J., Mex M. Artemisa. Rev Sanid Mil. 2006;60(2):109-115.

Most read articles by the same author(s)

> >>