Identification of enterobacteria producing extended-spectrum beta-lactamases (ESBLs) in pig farms in Matanzas province

Main Article Content

Carelia Martha Marrero-Moreno
Martha Mora-Llanes
Rosa Elena Hernández-Fillor
Michel Báez-Arias
Tania García-Morey
Ivette Espinosa-Castaño

Abstract

Extended-spectrum beta-lactamases (ESBLs) are enzymes encoded by different genes (blaSHV, blaTEM, blaCTX-M), located in plasmids, which facilitate their propagation among Gram-negative bacteria. These enzymes inactivate the beta-lactam ring of broad-spectrum, cephalosporins and monobactamic, but they are sensitive to cefamycins, carbapenems and betalactamase inhibitors. The objective of this work was to detect ESBLs-producing enterobacteria in farms and slaughterhouses in Matanzas province. Samples were collected from three pig farms and two slaughterhouses during the years 2016 and 2017. Swabs were made from different sites including animals, workers and environment; and they were grown in medium supplemented with cefotaxime. The antimicrobial susceptibility was determined by the disk diffusion method and ESBL detection by means of a screen test with indicator disks, two synergy tests with betalactamase inhibitors and by polymerase chain reaction (PCR). Forty-one enterobacteria isolates were identified, 17 of them were positive in the sieve test and 15 coincided in the synergy and PCR assays. The highest frequency was for the blaCTX-M gene followed by the blaTEM gene, while the blaSHV gene was not detected. The positive ESBL isolates were found in rectal swabs (9), on surfaces (2), hands of an operator (2) and on instruments (4), only on farm A and slaughterhouse 1. Four of these isolates also presented multiresistance to quinolones, tetracyclines, and aminoglycosides. This work evidences the dissemination of positive E. coli ESBL isolates in non-clinical settings. These pig production facilities are bacteria reservoirs and resistance genes propitiating their propagation through direct contact, in the food production chain or their dissemination to the environment.

Article Details

How to Cite
1.
Marrero-Moreno CM, Mora-Llanes M, Hernández-Fillor RE, Báez-Arias M, García-Morey T, Espinosa-Castaño I. Identification of enterobacteria producing extended-spectrum beta-lactamases (ESBLs) in pig farms in Matanzas province. Rev. Salud Anim. [Internet]. 2018 Jun. 7 [cited 2024 Nov. 24];39(3). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/918
Section
ARTÍCULOS ORIGINALES

References

López-Pueyo MJ, Gaite B, Amaya-Villar R, Garnacho-Montero J. Puesta al día en medicina intensiva: el enfermo crítico con infección grave Multirresistencia antibiótica en unidades de cuidados críticos. Med Intensiva. 2011;35(1):41-53.

Nguyen TN, Nguyen VC, Thwaites G, Carrique-Mas J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review Antibiotics. 2016;5(37).

Gang Zhou, Qing-Shan S, Xiao-Mo H, Xiao-Bao X. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int J Mo. Sci. 2015;16:21711-21733.

Frances M, Ellis RJ, Raymond B. Ecological and genetic determinants of plasmid distribution in Escherichia coli. Environment Microbiol. 2016;18(11):4230-4239

Madigan MT, Martinko JM, Dunlap PV, Clark DP. Brock: Biología de los microorganismos (12th ed.). Madrid (España): Pearson.http://cienciaybiologia.com/microbiologia/familiaenterobacteriaceae. 2009

Li XZ, Mehrotra M, Ghimire S, Adewoye L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Vet Microbiol. 2007;121:197-214.

García ML, Hendriksen RS, Fraile L, Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol. 2014;170:1-2.

Bou AG, Chaves SF, Palomo OA, Iglesias OJ. Métodos microbiológicos para la vigilancia del estado de portador de bacterias multirresistentes Nro. 55 de Enfermedades Infecciosas y Microbiología Clínica Recomendaciones de la Sociedad Española de Procedimientos en Microbiología Clínica. 2015; SEIMC.

Villegas M, Guzman B, Sifuentes O, Rossi F. Increasing prevalence of extended-spectrum-betalactamase among Gram-negative bacilli in Latin America – 2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Brazil. Braz J Infect Dis.2011;15(1):34-39.

Nguyen TN, Nguyen V C, Thwaites G, Carrique-Mas J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review Antibiotics. 2016;5(37).

Levy S, Fritz Gerald G, Macone A. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N Engl J Med. 1976; 295:583-588.

Chen G, Hao H, Xie S, Wang X, Dai M, Huang L, Yua Z. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Mycrobiology. 2014;5(217).

Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159-166.

Verraes C , Van Boxstael S, Meervenne EV, Van Coillie E, Butaye P, Catry B, et al. Antimicrobial Resistance in the Food Chain: A Review Int. J EnvironRes Public Health.2013;10:2643-2669

Lili G, Yeke T, Xiaodan Z, Jiaqing H, Zengmin M, Liangmeng W, Tongjie C. Emissions of Escherichia coli Carrying Extended-Spectrumβ-Lactamase Resistance from Pig Farms to the Surrounding Environment Int. J Environ Res Public Health.2015;12:4203-4213.

Quiñones D, Valverde A, Rodríguez-Baños M, Kobayashi N, Zayaz A, Abreu M, Cantón R, Del Campo R. High Clonal Diversity in a Non-Outbreak Situation of Clinical ESBL-Producing Klebsiella pneumoniae Isolates in the First National Surveillance Program in Cuba. Microbial Drug Resistance. 2013.

Instituto de Investigaciones Porcinas (IIP). Manual de Procedimientos Técnicos para la Crianza Porcina, MINAG, La Habana, Cuba. 2015.

OIE. Código Sanitario para los Animales Terrestres. Capítulo 7.8. Utilización de animales en la investigación y educación. Decimonovena edición. Paris, France. 2014.

Davis MF, Price L, Liu C, Silbergeld EK. An ecological perspective on U.S. industrial poultry production: the role of artificial ecosystems on the emergence of drug-resistant bacteria from agricultural environments. Current Opinion in Microbiology. 2011;14(3):244-250.

OIE. Código Sanitario para los Animales Terrestres .Capítulo 6.7.- Armonización de los programas nacionales de vigilancia y seguimiento de la resistencia a los agentes antimicrobianos. 2016.

Norma cubana NC 827: 2012.

Khan F, Rizvi M, Shukla I, Malik A. A novel approach for identification of members of Enterobacteriaceae isolated from clinical samples. Biol Med. 2011;3(2):313-319.

Clinical and Laboratory Standards Institute. (CLSI). Performance Standandars for Antimicrobial Susceptibility Testing 26eth ed. CLSI Supplment Informational Supplement M100S. Wayne: Clinical and Laboratory Standards Institute, USA.2016.

Costa D, Poeta P, Sáenz Y, Vinué L, Rojo-Bezares B, Jouini A, et al. Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J Antimicrob Chemother. 2006;59:1311-1312.

Briñas L., M. Lantero, I. de Diego, M. Alvarez, M. Zarazaga, Torres C. Mechanisms of resistance to expanded-spectrum cephalosporins in Escherichia coli isolates recovered in a Spanish hospital.. Antimicrob Chemother. 2005;56:1107-1110.

InfoStat versión 1.1. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2002

García CT, Castillo MA, Salazar RD. Mecanismos de resistencia a betalactámicos en bacterias gramnegativas Revista Cubana de Salud Pública Instituto de Medicina Tropical "Pedro Kourí". La Habana, Cuba. 2014. 40(1):129-135.

García ML, Hendriksen RS, Fraile L and Aarestrup FM. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine. Vet Microbiol. 2014;170:1-9.

Navarro F, Miró E, Mirelis B. Lectura interpretada del antibiograma de enterobacterias. Enferm Infecc Microbiol Clin. 2010; 28(9): 638-645.

Thomson KS. Controversies about extended-espectrum and AmpC beta-lactamases. Emerg. Infect Dis. 2017;333-336.

Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933-951.

Jacoby G, Muñoz S. The new β-lactamases. N Engl J Med; 2005; 352:380-391.

Poirel L, Naas T, Thomas I, Karim A, Bingen E, Nordmann P. CTX-M-Type Extended-Spectrum ß-Lactamase That Hydrolyzes Ceftazidime through a Single Amino Acid Substitution in the Omega Loop. Antimicrobial Agents and Chemotherapy. 2008;45(12):3355-3361.

Cano EM, Domínguez AM, Ezpeleta BC, Martínez ML, Padilla OB. Ramírez de Arellano E. Cultivos de vigilancia epidemiológica de bacterias resistentes a los antimicrobianos de interés nosocomial. Recomendaciones de la Sociedad Española de Procedimientos en Microbiología Clínica. 2007;(SEIMC). ISBN-978-84-611-9636-4.

Treviño M, Martínez-Lamas L, Romero-Jung P, Varón C, Moldes L, et al. Comparación entre las pruebas para la detección de betalactamasas de espectro extendido de los sistemas Vitek2 y Phoenix. Enferm Infecc Microbiol Clin. 2009.

Truppia LA, Mollerach A, di Conza JA. Comparación de tres métodos microbiológicos para la detección de betalactamasas de espectro extendido en enterobacterias aisladas en Santa Fe (Argentina). Enfermedades infecciosas y microbiología clínica. 2005;23(9):525-528.

Von Salviati C, Laube H ,Guerra B, Roesler U , Anika Friese AEmission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet Microbiol. 2015;175:77-84.

Liao XP, Xia J, Yang L, Li L, Sun J, Liu Y-H, Jiang H-X. Characterization of CTX-M-14-producing Escherichia coli from food-producing animals. Front Microbiol. 2015;6:1136.

Bonnet R. Growing Group of Extended-Spectrum β-Lactamases: the CTX-M Enzymes Antimicrob Agents Chemother. 2004;48(1):1-14.

Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of Quinolone Resistance in Escherichia coli and Salmonella: Recent Developments. Inter. J Antimicrob Agents. 2005;25(5):358-373.

Schmithausen RM, Schulze-Geisthoevel SV, Stemmer F, El-Jade M, Reif M, Hack S, et al. Analysis of Transmission of MRSA and ESBLE among Pigs and Farm Personnel. 2015. PLoS ONE 10 (9): e0138173. doi:10.1371/journal.pone.0138173.

Yang H, Chen S, While D, Zhao S, Mc Dermantt P, Walker R, Merig J. Characterization of multiple- antimicrobial- resistant Escherichia coli isolates from diseased chicken and swine in China. J Clin Microbiol. 2014;42(8):3483-3489.

Livermore DM, and Woodford N. The beta-lactamase threat in enterobacteriaceae, pseudomonas and acinetobacter. Trends Microbiol. 2006;14(9):413-420.

Torres C y Zarazaga M. BLEE en animales y su importancia en la transmisión a humanos Enferm Infecc Microbiol Clin. 2007;25 Supl. 2:29-37.

Josef DJ, Stedt J and Gustafsson L. Zero prevalence of extended spectrum beta-lactamase-producing bacteria in 300 breeding Collared Flycatchers in Sweden. Infection Ecology and Epidemiology 2013;3:2

Moodley A, Guardabassi L. Transmission of IncN plasmids carrying blaCTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother. 2009;53(4):1709-1711.

Hammerum AM, Larsen J, Andersen VD, Lester CH, Skovgaard Skytte TS, Hansen F, et al. Characterization of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. J Antimicrob Chemother. 2014.

Huijbers PM, Graat EA, Haenen AP, van Santen MG, van Essen-Zandbergen A, Mevius DJ, et al.Extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. J Antimicrob Chemother. 2014;69(10):2669-2675.

Hota B. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis. 2004; 39:1182-1189.

Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infectious Diseases. 2006;6:130.

Bhalla A, Pultz NJ, Gries DM. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol. 2004;25:164-167.

Collineau L., Backhans A., Dewulf, J., Emanuelson U.F., Grosse B.E., Lehébel A., Loesken, S.E., Nielsen O., Postma M., Sjölund M., Stärk K.D.C, Belloc C.. Profile of pig farms combining high performance and low antimicrobial usage within four European countries Veterinary Record 201710.1136/vr.103988. Disponible http://veterinaryrecord.bmj.com

Paivarinta M, Pohjola L, Fredriksson-Ahomaa M, Heikinheimo A. Low Occurrence of Extended-Spectrum b-lactamase-Producing Escherichia coli in Finnish Food-Producing Animals Zoonoses and Public Health Blackwell Verlag GmbH. 2016.

Most read articles by the same author(s)

> >> 

Similar Articles

You may also start an advanced similarity search for this article.