Bioactividad de Spilanthes acmella (Asteraceae) a Raoiella indica (Acari: Tenuipalpidae) y selectividad al depredador Amblyseius largoensis (Acari: Phytoseiidae)

Caroline Rabelo Coelho, Maria Clezia dos Santos, Luis Viteri-Jumbo, José Guedes de Sena Filho, Karina Neoob de Carvalho Castro, Kirley Marques Canuto, Edy Sousa de Brito, Ana Sheila de Queiroz Souza, Adenir Vieira Teodoro

Resumen

El jambu, Spilanthes acmella (Asteraceae), posee bioactividad contra plagas; sin embargo, es poco conocido sobre el efecto a ácaros fitófagos y su compatibilidad con ácaros depredadores. El ácaro rojo del cocotero Raoiella indica es una plaga severa de diversos cultivos agrícolas, dentro de los cuales está el cocotero. El ácaro depredador Amblyseius largoensis (Acari: Phytoseiidae) se encuentra en asociación con R. indica en diversos países y puede auxiliar en el control de esta plaga en campo. Asociado al control biológico, los productos que sean compatibles con los enemigos naturales pueden ayudar en el control de esta plaga. Se evaluó la actividad acaricida por medio de bioensayos de concentración-mortalidad del extracto etanólico (EE) de S. acmella contra R. indica y su selectividad al depredador A. largoensis. Además, se evaluaron el efecto repelente y la tasa de crecimiento poblacional en la CL50 y la CL80. La CL50 y la CL80 de EE de S. acmella, estimada para R. indica, fueron repelentes a la plaga hasta 48 horas después de la aplicación y repelió al depredador solamente hasta una hora en la mayor concentración. Esas concentraciones del EE de S. acmella redujeron drásticamente la tasa de crecimiento de R. indica y no afectaron el aumento poblacional del depredador. Se concluye que el EE de S. acmella podría ser utilizado en el manejo de R. indica por ser tóxico, repelente y reducir el crecimiento poblacional de esta plaga, además de ser selectivo al ácaro depredador A. largoensis.

Palabras clave

acaricida; Cocos nucifera; control biológico; fitoquímicos; manejo de plagas

Texto completo:

HTML PDF XML-JATS EPUB

Referencias

Moreno SC, Carvalho GA, Picanço MC, Morais EG, Pereira RM. Bioactivity of compounds from Acmella oleracea against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and selectivity to two non-target species. Pest Manag Sci. 2011;68(3):386-393.

Teodoro AV, Silva MJS, Sena-Filho JG, Oliveira EE, Galvão AS, Silva SS. Bioactivity of cottonseed oil against the coconut mite Aceria guerreronis (Acari: Eriophyidae) and side effects on Typhlodromus ornatus (Acari: Phytoseeidae). Syst Appl Acarol. 2017;22(7):1037-1047.

Oliveira NNFC, Galvão AS, Amaral EA, Santos AWO, Sena-Filho JG, Oliveira EE, et al. Toxicity of vegetable oils to the coconut mite Aceria guerreronis and selectivity against the predator Neoseiulus baraki. Exp Appl Acarol. 2017;72(1):23-34.

Pimentel AP, Teodoro AV, Passos EM, Sena Filho JGS, Santos MC, Coelho CR, et al. Bioactividad de aceites vegetales a Orthezia praelonga (Hemiptera: Sternorrhynca: Orthezidae) y selectividad a su predador Ceraeochrysa caligata (Neuroptera: Chrysopidae). Rev. Proteccion Veg. 2018;33(3):1-9.

Barbosa AF, Silva KCB, Oliveira MCC, De Carvalho MG, De Sabaa-Srur AUO. Effects of Acmella oleracea methanolic extract and fractions on the tyrosinase enzyme. Braz. J. Pharmacognosy. 2016;26(3):321-332.

Rani AS, Murty SU. Evaluation of antimicrobial activity of Spilanthes acmella flower head extract. J Nat Remedies. 2005; 5:170-171.

Bessada SMF, Barreira JCM, Oliveira MBPP. Asteraceae species with most prominent bioactivity and their potential applications: A review. Indu Crop Prod. 2015; 76:604-615.

Abeysiri GRPI, Dharmadasa RM, Abeysinghe DC, Samarasinghe K. Screening of phytochemical, physic-chemical and bioactivity of different parts of Acmella oleracea Murr. (Asteracea), a natural remedy for toothache. Ind Crop Prod. 2013; 50:853-856.

Simas NK, Dellamora ECL, Schripsema J, Lage CLS, Oliveira Filho AM, Wessjohann L, et al. Acetylenic 2-phenylethylamides a new isobutylamides from Acmella oleracea (L.) R.K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti. Phytochem Let. 2013;6(1):67-72.

Castro KNC, Lima DF, Vasconcelos LC, Leite JRSA, Santos RC, Paz Neto AA, et al. Acaricide activity in vitro of Acmella oleracea against Rhicephalus micropilus. Parasitol Res. 2014;110(10):3697-3701

Cruz PB, Barbosa PF, Zeringota V, Melo D, Novato T, Fidelis QC, et al. Acaricidal activity of methanol extract of Acmella oleracea L. (Asteraceae) and spilanthol on Rhipicephalus microplus (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae). Vet Parasitol. 2016;228(15):137-143.

Marchesini P, Barbosa AF, Franco C, Novato T, Sanches MNG, Carvalho MG, et al. Activity of the extract of Acmella oleracea on immature stages of Amblyomma sculptum (Acari: Ixodidae). Veterinary parasitology. 2018; 254:147-150.

Ochoa R, Beard JJ, Bauchan GR, Kane EC, Dowling APG, Erbe EF. Herbivore exploit chikin armor of host. American Entomol. 2011; 57:26-30

Beard JJ, Ochoa R, Bauchan GR, Welbourn WC, Pooley C, Dowling APG. External mouthpart morphology in the Tenuipalpidae (Tetranychoidea): Raoiella a case study. Exp Appl Acarol. 2012;46(3):111-129

Carrillo D, Amalin D, Hosein F, Roda A, Duncan RE, Peña JE. Host plant range of Raoiella indica (Acari: Tenuipalpidae) in areas of invasion of the New World. Exp Appl Acarol. 2012;57(3):271-289.

Gómez-Moya C, Lima TPS, Morais EGF, Gondim MGC, de Moraes GJ. Hosts of Raoiella indica Hirst (Acari: Tenuipalpidae) native to the Brazilian Amazon. J Agri Sci. 2017;9(4):86-94.

Ramos-Lima M, Moreno-Rodriguez D, Vargas-Sandoval M. Nuevas palmas hospedantes de Raoiella indica (Acari: Tenuipalpidae) en Cuba. Rev Colomb Entomol. 2017;43(1):113-120.

Roda A, Nachman G, Hoosein F, Rodrigues JCV, Peña J. Spatial distributions of the red palm mite, Raoiella indica (Acari: Tenuipalpidae) on coconut and their implications for development of efficient sampling plans. Exp Appl Acarol. 2012;57(3):291-308.

Oliveira DC, Rado EP, Moraes de JG, Morais EGF, Chagas EA, Gondim Jr MGC, et al. First report of Raoiella indica (Acari: Tenuipalpidae) in southeastern Brazil. Fla Entomol. 2016; 99:123-125.

Melo JWS, Navia D, Mendes JA, Filgueiras RMC, Teodoro AV, Ferreira JMS et al. The invasive red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), in Brazil: range extension and arrival into the most threatened area, the Northeast region. Int J Acarol. 2018;44(4-5):146-149.

Torre-Santana PE, Suarez-González A, Iriz-Gonzalez A. Presencia del ácaro Raoiella indica Hirst (Acari: Tenuipalpidae) en Cuba. Rev. Proteccion Veg. 2010;25(1):1-4.

Flores-Galano G, Rodríguez-Morell H, Hernandez-Turcas R, Miranda-Cabrera I, Montoya-Ramos A. Dinámica poblacional de Raoiella indica Hirst (Acari: Tenuipalpidae) en cocotero (Cocos nucifera L.) en Guantánamo, Cuba. Rev. Proteccion Veg. 2017;32(1):23-32.

Estrada EG, Acuña JA, Chaires MP, Equihua A. Raoiella indica Hisrt (Acari: Tenuipalpidae) su situación actual en el estado de Quintana Roo, a ocho meses de su detección oficial. Folia Entomol Mex. 2015;1(1):7-14.

Gondim Jr MG, Castro TMN, Massaro Jr AL, Navia D, Melo JWS, Demite PR, et al. Can the red palm mite threaten the amazon vegetation? System biodiv. 2012;10(4):527-535.

Amaro G, Morais EG. Potential geographical distribution of the red palm mite in South America. Exp Appl Acarol. 2013;60(3):342-355.

Navia D, Hamada E, Gondim Jr MGC, Benito NP. Spatial forecasting of red palm mite in Brazil under current and future climate change scenarios. Pesq Agropec Bra. 2016;51(5):586-598.

Moraes de GJ, Castro TMMG, Kreiter S, Quilici S, Gondim Jr MG, De Sá LAN. Search for natural enemies of Raoiella indica Hirst in Réunion Island (Indian Ocean). Acarol. 2012;52(2):129-134.

Rodríguez H, Alonso D, García A, Chico R, Hastie E, Ramos M. Ácaros depredadores asociados a Raoiella indica Hirst (Acari: Tenuipalpidae) en San José de las Lajas, Mayabeque. Métodos en Ecología y Sistemática. 2016;11(1):12-23.

Ramos M, Moreno D. Relación de Raoiella indica Hirst (Acari: Tenuipalpidae) con los ácaros depredadores y las especies de palmas en Cuba. Entomol Mex. 2015; 2:26-33.

Bae SS, Ehrmann BM, Ettefagh KA, Cech NB. A validated liquid chromatography - electrospray ionization - mass spectrometry method for quantification of spilanthol in Spilanthes acmella (L.) Murr. Phytochem Anal. 2010;21(5):438-443.

Nakatani N, Nagashima M. Pungent alkamides from Spilanthes acmella L. var. oleracea Clarke (1992). Biosci Biotechnol Biochem. 1992;56(5):759-762.

Hassan SA, Bigler F, Bogenschütz H, Boller E, Brun J, Calis JNM, et al. Results of the sixth joint pesticide testing programme of the IOBC/WPRS. Entomop. 1994; 39:107-119

SAS INSTITUTE. SAS/STAT User's guide, version 8.02, TS level 2 MO. SAS Institute Inc., Cary, North Carolina, 2002.

Stark JD, Tanigoshi L, Bounfour M, Antonelli A. Reproductive potential: its influence on the susceptibility of a species to pesticides. Ecotox Environ Safe. 1997;37(3):273-279.

Teodoro AV, Tscharntke T, Klein AM. From the laboratory to the field: contrasting effects of multitrophic interactions and agroforestry management on coffee pest densities. Entomol Exp Appl. 2009;31: 121-129

Kadir HA, Zakaria BM, Kechil AA, Azirun MDS. Toxicity and electrophysiological effects of Spilanthes acmella Murr. Extracts on Periplaneta Americana L. Pest Sci. 1989;25(4):329-335.

Saraf DK, Dixit VK. Spilanthes acmella Murr.: study on its extract spilanthol as larvicidal compound. Asian J Exp Sci. 2002; 16:9-19.

Suwanjang W, Khongniam B, Srisung S, Prachayasittikul S, Prachayasittikul V. Neuroprotetive effect of Spilanthes acmella Murr. On pesticide-induced neuronal cells death. Asian Pac Trop Med. 2017;10(1):1-7.

Vasquez C, Velandia P, Jimenez MA, Pazmino P, Velastegui G, Perez-Salinas. Efectividad in vitro del extracto etanólico de crisantemo y de hongos acaropatogenos em el control del ácaro rojo de las palmeras. Bioagro. 2018;30(2):135-144.

Sousa RCP, Morais De EGF, Pereira RS, Chagas EA, Schurt DA. Atividade acaricida de extrato a base de sementes dos frutos de Caçari. Ver Geintec. ISSN: 2237-0722. 8(3):4495-4507. DOI: 10.7198/geintec.v8i3.988.

Greger H. Alkamides; a critical reconsideration of a multifunctional class of unsaturated fatty acid amides. Phytochem Rev. 2016;15(5):729-770.

Rajendran R, Narashimman BS, Trivedi V, Chaturvedi R. Isolation and quantification of antimalarial N-alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J Biosci Bioeng. 2017;124(1):99-107.

Arif M, Juyal D, Joshi A. A review on pharmacognostic and phytochemical study of a plant Spilanthes acmella Murr. J Pharm Inn. 2017;6(5):172-177.

Ferraz JC, Matos CHC, Oliveira CRF, Sá MGR, Conceição AGC. Acaricidal activity of juazeiro leaf extract against red spider mite in cotton plants. Pesq Agropec Bra. 2017;52(7):493-499.

Veronez B, Sato ME, Nicastro RE. Toxicidade de compostos sintéticos e naturais sobre Tetranychus urticae e o predador Phytoseiulus macropilis. Pesq Agropec Bra. 2012;47(4):511-518.

Cloyd RA, Galle CL, Keith SR. Compatibility of three miticides with the predatory mites Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Hort Sci. 2006;44:476-480.

Lima DB, Melo JWS, Gondim Jr MGC, Moraes de GJ. Limitations of Neoseiulus baraki and Proctolaelaps bickleyi as control agents of Aceria guerreronis Keifer. Exp Appl Acarol. 2012;56(3):233-246.

Degrande PE, Reis PR, Carvalho GA, Belarmino LC. Metodologia para avaliar o impacto de agrotóxicos sobre inimigos naturais. In: Parra JRP, Botellho PSM, Correa-Ferreira BS, Bento JMS. Controle Biológico no Brasil: parasitoides e predadores. 2002. Manole, São Paulo, 635 p.

Xavier MVA, Matos CHC, Oliveira CRF, Sá MGR, Sampaio GRM. Toxicidade e repelência de extratos de plantas da caatinga sobre Tetranychus bastosi Tutler, Baker & Sales (Acari: Tetranychidae) em pinhão-manso. Rev Bras Pl Med. 2015;17(4):790-797.

Freitas de GS, Santos MC, Lira VA, Galvão AS, Oliveira EE, Sena Filho JGS, et al. Acute and non-lethal effects of coconut oil on predatory mite Typhlodromus ornatus (Acari Phytoseiidae). Syst Appl Acarol. 2018;23(7):1333-1341.

Lockwood JA, Sparks T, Story RN. Evolution of insect resistance to insecticides: A reevaluation of the roles of physiology an behavior. A Entomol. 1984;30(4):41-51.

Cordeiro EMG, Moura IL, Fadini MA, Guedes RN. Insecticide survival and behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere. 2010;93(6):1111-1116.

Oliveira PR, Castro KNC, Anholeto LA, Mathias MIC. Cytotoxic effects of extract of Acmella oleraceae (Jambu) in Rhipicephalus micropilus females ticks. Microsc Res Tech. 2016; 76:744-753.

Moutia LA. Contribution to the study of some phytophagous acarina and their predators in Mautitius. Bull Entomol Res. 1958;49(1):59-75.

Enlaces refback

  • No hay ningún enlace refback.