Biochar y su contribución a la nutrición, crecimiento y defensa de las plantas

Contenido principal del artículo

Ivonne González-Marquetti
Mayra G. Rodríguez
Belkis Peteira Delgado-Oramas
Hans-Peter Schmidt

Resumen

El biochar es el carbón negro rico en C usado para mejorar la fertilidad de los suelos. Este producto se propone como una de las alternativas para enfrentar el cambio climático, debido a su capacidad para secuestrar carbono atmosférico. Sus características físico-químicas están influenciadas por el tipo de biomasa y las condiciones en las que se desarrolla la pirólisis. Se demostró que este material puede poseer altos contenidos de N, P, K, Mg, Mn, Na, Ca, Cu, Zn, Co, Si, Mo, Cr, Ni y otros elementos trazas. La aplicación de biochar en el suelo puede inducir cambios morfofisiológicos y metabólicos en las plantas y mejorar las interacciones que establecen con los microorganismos del suelo, entre los que se incluyen los hongos micorrícicos arbusculares, las bacterias promotoras de crecimiento vegetal y los hongos antagonistas como Trichoderma. El biochar puede ser enriquecido o combinado con compost, fertilizantes y microorganismos benéficos, lo que promueve el crecimiento y la defensa de las plantas contra diversas plagas. El efecto interactivo de biochar con las lombrices de tierra es de tipo suelo-específica, debido a que depende de la calidad del suelo en el que se pongan en contacto. Además, el biochar es capaz de suprimir diversas plagas del suelo e inducir resistencia sistémica contra patógenos foliares en algunas plantas. Los objetivos de este trabajo fueron analizar y resumir aspectos relativos al biochar y la nutrición vegetal, promoción del crecimiento vegetal; biochar y otros organismos de suelo que favorecen el crecimiento y desarrollo de las plantas, la relación de este producto con la disminución/supresión de plagas y la defensa de las plantas, así como algunas consideraciones sobre su aplicación.

Detalles del artículo

Cómo citar
González-Marquetti, I., Rodríguez, M. G., Delgado-Oramas, B. P., & Schmidt, H.-P. (2020). Biochar y su contribución a la nutrición, crecimiento y defensa de las plantas. Revista De Protección Vegetal, 35(2). Recuperado a partir de http://revistas.censa.edu.cu/index.php/RPV/article/view/1090
Sección
ARTÍCULOS RESEÑA

Citas

Bezerra J, Turnhout E, Melo Vasquez I, Francischinelli Rittl T, Arts B, Kuyper TW. The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. Journal of Environmental Policy & Planning. 2016. https://doi.org/10.1080/1523908X.2016.1269644.

Chan KY, Xu Z. Biochar nutrient properties and their enhancement. En Biochar for Environmental Management-Science and Technology. Editores: Lehmann J, Joseph S. 2009; pp 68-84.

Kammann C, Graber ER. En Lehmann J, Joseph S. (Eds.), Biochar management Science, Technology and Implementation. Routledge, New York. 2015, pp 391-419.

Elad Y, Cytryn E, Meller Harel YM, Lew B, Graber ER. The Biochar Effect: plant resistance to biotic stresses. Phytopathol. Mediterr. 2011; 50: 335−349.

Lehmann J, Joseph S. Biochar for environmental management: an introduction. En: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan. 2009, pp. 1-12.

Neves E, Petersen JB, Bartone RN, Silva CA. Historical and socio-cultural origins of Amazonian dark earths. En J. Lehmann, D. Kern, B. Glaser, & W. Woods (Eds.), Amazonian dark earths: Origin, properties, management Boston, MA: Kluwer Academic Publishers. 2003, pp. 29-50.

Schmidt HP. 55 uses of Biochar. Ithaka Journal. 2012; 1: 286-289.

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota: a review. Soil Biology & Biochemistry. 2011; 43: 1812-1836.

Amin FR, Huang Y, He Y, Zhang R, Liu G, Chen C. Biochar applications and modern techniques for characterization. Clean Techn Environ Policy. 2016. https://doi.org/10.1007/s10098-016-1218-8

Graber ER y Elad Y. Biochar impact on plant resistance to disease. In Biochar and soil biota. Editado por Ladygina N and Rineau F. CRC Press. 2013, pp 41-68.

Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DCW, Ok YS, Kwon EE. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy. 2017; 185: 214-222.

Maraseni TN. Biochar: maximising the benefits. International Journal of Environmental Studies. 2010; 67(3): 319-327. https://doi.org/10.1080/00207231003612225

Tang J, Zhu W, Kookana R, Katayama A. Characteristics of biochar and its application in remediation of contamined soil. Journal of Bioscience and Bioengineering. 2013; 116(6): 653-659.

Olmo-Prieto M. Efectos del biochar sobre el suelo, las características de la raíz y la producción vegetal. [Tesis en opción al grado de Doctor]. Universidad de Córdoba. 2016.

Muhammad N, Brookes PC, Wu J. Addition impact of biochar from different feed stocks on microbial community and available concentrations of elements in a Psammaquent and a Plinthudult. Journal of Soil Science and Plant Nutrition. 2016; 16(1): 137-153.

Aragão de Figueredo N, da Costa LM, Car L. Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica. 2017; 48(3): 395-403.

Sullivan DM, Miller RO. Compost Quality Attributes, Measurements and Variability, CRC Press. 2001.

Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry . 2012; 46: 73-79.

Angst T, Sohi SP. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy. 2013; 5: 221-226. https://doi.org/10.1111/gcbb.12023

Patel AK. Land Applications of Biochar: An Emerging Area. En: Waste to Wealth. Energy, Environment, and Sustainability. Editores: Singhania RR, Agarwal R, Kumar R, Sukumran R. Springer. 2018, pp: 172-197. https://doi.org/10.1007/978-981-10-7431-8_9.

Solomon D, Lehmann J, Fraser JA, Leach M, Amanor K, Frausin V, et al. Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative. Frontiers in Ecology and the Environment. 2016; 14: 71-76. https://doi.org/10.1002/fee.1226.

Ghosh S, Ow LF, Wilson B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. International J of Environmental Science and Technology. 2015; 12: 1303-1310. https://doi.org/10.1007/s13762-014-0508-0.

Kammann CI, Glaser B, Schmidt HP. Combining biochar and organic amendments. En: Biochar in European soils and agriculture: science and practice, Shackley S, Ruysschaert G, Zwart K, Glaser B (eds). Routledge: London. 2016, 136-164.

Vandecasteele B, Sinicco T, D’Hose T, Vanden Nest T, Mondini C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management. 2016; 168: 200-209. https://doi.org/10.1016/j.jenvman.2015.11.045.

Schmidt HP, Pandit BH, Cornelissen G, Kammann CI. Biochar-based fertilization with liquid nutrient enrichment: 21 field trials covering 13 crop species in Nepal. Land Degrad Develop. 2017. https://doi.org/10.1002/ldr.2761

Hagemann N, Joseph S, Schmidt HP, Kammann CI, Harter J, Borch T, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications. 2017. https://doi.org/10.1038/s41467-017-01123-0

Olmo M, Albuquerque JA, Barrón V, del Campillo MC, Gallardo A, Fuentes M, et al. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol Fertil Soils. 2014; 50: 1177-1187. https://doi.org/10.1007/s00374-014-0959-y

Olmo M, Villar R, Salazar P, Alburquerque JA. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil. 2015. https://doi.org/10.1007/s11104-015-2700-5

Xiang Y, Deng Q, Duan H, Guo Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy . 2017; 9: 1563-1572. https://doi.org/10.1111/gcbb.12449

Farhangi-Abriz S, Torabian S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis. 2018; 74:215-223. https://doi.org/10.1007/s13199-017-0509-0

Wang C, Alidoust D, Yang X, Isoda A. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety. 2018; 150:62-69. https://doi.org/10.1016/J.ECOENV.2017.12.036

Sun CX, Chen X, Cao MM, Li MQ, Zhang YL. Growth and metabolic responses of maize roots to Straw biochar application at different rates. Plant Soil . 2017. https://doi.org/10.1007/s11104-017-3229-6

Granda-Mora KI, Colás-Sánchez A, Gutiérrez-Sánchez Y, Cupull-Santana R, Alvarado-Capó Y, Torres-Gutiérrez R. Efecto de aislados de Rhizobium sobre parámetros fenotípicos y la fijación de nitrógeno en fenotipos de frijol común (Phaseolus vulgaris L.). Centro Agrícola. 2016; 43(1): 62-70.

Simon L. Phylogeny of the Glomales: Deciphering the Past to Understand the Present. New Phytologist. 1996; 133(1): 95-101.

Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology. 2015. http://dx.doi.org/10.1071/FP15054

Egamberdieva D, Wirth S, Behrendt U, Abd_Allah EF, Berg G. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria. Front. Microbiol. 2016; 7: 209. https://doi.org/10.3389/fmicb.2016.00209

Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Fahad Al-Arjani A-B, Singh G, et al. Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of Biological Sciences. 2018. https://doi.org/10.1016/j.sjbs.2018.11.005

Wang R, Wei S, Jia P, Liu T, Hou D, Xie R, et al. Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils. Science of the Total Environment. 2019; 676: 627-638. https://doi.org/10.1016/j.scitotenv.2019.04.133

Liu C, Liu F, Ravnskov S, Rubæk GH, Sun Z, Andersen MN. Impact of Wood Biochar and Its Interactions with Mycorrhizal Fungi, Phosphorus Fertilization and Irrigation Strategies on Potato Growth. J Agro Crop Sci. 2016. https://doi.org/10.1111/jac.12185

Saxena J, Rana G, Pandey M. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Scientia Horticulturae. 2013; 162: 351-356.

Nzanza, B, Marais D, Soundy P. Effect of arbuscular mycorrhizal fungal inoculation and biochar amendment on growth and yield of tomato. Int. J. Agric. Biol. 2012; 14: 965-969.

Kasmaei LS, Yasrebi J, Zarei M, Ronaghi A, Ghasemi R, Saharkhiz MJ, et al. Influence of plant growth promoting rhizobacteria, compost, and biochar of Azolla on rosemary (Rosmarinus officinalis L.) growth and some soil quality indicators in a calcareous soil, Communications in Soil Science and Plant Analysis, 2018. https://doi.org/10.1080/00103624.2018.1554669

Aggangan NS, Cortes AD, Opulencia RB, Jomao-as JG, Yecyec RP. Effects of Mycorrhizal Fungi and Bamboo Biochar on the Rhizosphere Bacterial Population and Nutrient Uptake of Cacao (Theobroma cacao L.) Seedlings. Philippine Journal of Crop Science (PJCS). 2019; 44 (1):1-9.

Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, et al. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. International Journal of Phytoremediation. 2020. https://doi.org/10.1080/15226514.2020.1725867

Moller L. Soil yeasts, mycorrhizal fungi and biochar: their interactions and effect on wheat (Triticum aestivum L.) growth and nutrition. [Tesis en opción al grado de Master en Ciencias en Microbiología]. Universidad de Stellenbosch, 2012.

Ajema L. Effects of Biochar Application on Beneficial Soil Organism Review. International Journal of Research Studies in Science, Engineering and Technology. 2018; 5(5): 9-18.

Schmidt HP, Hagemann N, Draper K, Kammann C. The use of biochar in animal feeding. PeerJ. 2019; 7:e7373. https://doi.org/10.7717/peerj.7373

Sun T, Levin BDA, Guzman JJL, Enders A, Muller DA, Angenent LT, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications . 2017; 8(1):14873. https://doi.org/10.1038/ncomms14873

Vejvodová K, Száková J, García-Sánchez M, Praus L, García Romera I, Tlustoš P. Effect of Dry Olive Residue-Based Biochar and Arbuscular Mycorrhizal Fungi Inoculation on the Nutrient Status and Trace Element Contents in Wheat Grown in the As-, Cd-, Pb-, and Zn-Contaminated Soils. J Soil Sci Plant Nutr. 2020. https://doi.org/10.1007/s42729-020-00193-2

Qiao YH, Crowley D, Wang K, Zhang HQ, Li HF. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ Pollut. 2015; 206: 636-643.

Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SLS, Rillig MC. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces Soil Biology and Biochemistry. 2014; 77: 252-260. http://dx.doi.org/10.1016/j.soilbio.2014.06.012.

Edwards CA. The importance of earthworms as key representatives of the soil fauna. En: Edwards, C.A. (Ed.), Earthworm Ecology, segunda ed. Florida, Boca Raton. 2004, pp. 3-11.

Garbuz S, Camps-Arbestain M, Mackay A, DeVantier B, Minor M. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Applied Soil Ecology. 2019. https://doi.org/10.1016/j.apsoil.2019.103402.

Liesch AM, Weyers SL, Gaskin JW, Das KC. Impact of two different biochars on earthworm growth and survival. Annals of Environmental Science. 2010; 4: 1-9.

Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution. 2011; 159: 616-622.

Li D, Hockaday WC, Masiello CA, Alvarez PJJ. Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology & Biochemistry 43. 2011; 1732-1737.

International Biochar Initiative (IBI). 2015. Standardized product definition and product testing guidelines for biochar that is used in soil. Version 1.1. Disponible en https://www.biocharinternational.org/wp-content/uploads/2018/04/Technical-Note_Standards-V1.1.pdf.

EBC. “European Biochar Certificate - Guidelines for a Sustainable Production of Biochar”. European Biochar foundation (EBC) Arbaz, Switzerland. http://www.european-biochar.org/en/download. Versión 6.2E del 4 de febrero de 2016, https://doi.org/10.13140/RG.2.1.4658.7043

Noguera D, Rondón M, Laossi KR, Hoyos V, Lavelle P, Cruz de Carvalho MH, et al. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology & Biochemistry . 2010; 42: 1017-1027.

Spokas KA, Novak JM, Stewart CE, Cantrell KB, Uchimiya M, DuSaire MG, et al. Qualitative analysis of volatile organic compounds on biochar. Chemosphere. 2011; 85: 869-882.

Rogovska N, Laird D, Leandro L, Aller D. Biochar effect on severity of soybean root disease caused by Fusarium virguliforme. Plant Soil . 2016. https://doi.org/10.1007/s11104-016-3086-8

Rahayu DS, Sari NP. Development of Pratylenchus coffeae in Biochar Applied Soil, Coffee Roots and Its Effect on Plant Growth. Pelita Perkebunan. 2017; 33 (1): 24-32.

Cao Y, Gao Y, Qi Y, Li J. Biochar-enhanced composts reduce the potential leaching of nutrients and heavy metals and suppress plant-parasitic nematodes in excessively fertilized cucumber soils. Environmental Science and Pollution Research. 2017. https://doi.org/10.1007/s11356-017-1061-4.

Madriz K. Mecanismos de defensa en las interacciones planta-patógeno. Manejo Integrado de Plagas. 2002; 63: 22-32.

Van der Ent S, Van Wees SC, Pieterse CM. Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry. 2009; 70: 1581-1588.

Vallad GE, Goodman RM. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science. 2004; 44: 1920-1934.

Harman GE, Howell CR, Vitebro RA, Chet I, Lorito M. Trichoderma species - opportunistic, avirulent plant symbionts. National Reviews of Microbiolology. 2004; 2: 43-56.

Akhter A, Hage-Ahmed K, Soja G, Steinkellner S. Potential of Fusarium wilt-inducing chlamydospores, in vitro behaviour in root exudates and physiology of tomato in biochar and compost amended soil. Plant Soil . 2016; 406:425-440. https://doi.org/10.1007/s11104-016-2948-4

McCormack SA, Ostle N, Bardgett RD, Hopkins DW, Vanbergen AJ. Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy . 2013; 5: 81-95. https://doi.org/10.1111/gcbb.12046

Graber ER, Meller Harel YM, Kolton M, Cytryn E, Silber A, Rav David DR, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soiless media. Plant and Soil. 2010; 337: 481-496.

Meller Harel Y, Elad Y, Rav-David D, Borenstein M, Shulchani R, Lew B, et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil . 2012; 357(1-2): 245-257.

Haile ZM, Meller Harel Y, Rav-David D, Graber ER, Elad Y. The nature of systemic resistance induced in tomato (Solanum lycopersicum) by biochar soil treatments. Induced resistance in plants against insects and diseases IOBC-WPRS Bulletin. 2013; 89: 227-230.

Viger M, Hancock RD, Miglietta F, Taylor G. More plant growth but less plant defense? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy . 2015; 7: 658-672. https://doi.org/10.1111/gcbb.12182

Mehari ZH, Elad Y, Rav-David D, Graber ER, Meller Harel Y. Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant Soil . 2015. https://doi.org/10.1007/s11104-015-2445-1

Kulbat K. The role of phenolic compounds in plant resistance. Biotechnol Food Sci. 2016; 80(2): 97-108.

Khalifa W. Biochar Soil Amendment Induced Resistance in Tomato against Tobacco Mosaic Virus. Middle East J. Agric. Res. 2017; 6(4): 1478-1489. ISSN: 2077-4605

Hunt J, DuPonte M, Sato D, Kawabata A. The Basics of Biochar: A Natural Soil Amendment. Hawai, US. (En línea). 2010. Consultado 6 de mayo de 2020. Disponible en Disponible en http://www.ctahr.hawaii.edu/oc/freepubs/pdf/SCM-30.pdf .

Vecstaudza D, Senkovs M, Nikolajeva V, Kasparinskis R, Muter O. Wooden biochar as a carrier for endophytic isolates. Rhizosphere. 2017; 3: 126-127.

Martínez B, Infante D, Reyes Y. Trichoderma spp. y su función en el control de plagas en los cultivos. Rev. Protección Veg. 2013; 28(1):1-11.

González-Marquetti I, Ynfante-Martínez D, Arias-Vargas Y, Gorrita-Ramírez S, Hernández-García T, de la Noval-Pons BM, et al. Efecto de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304. Rev. Protección Veg . 2019;34(2).

Graber ER, Meller Harel YM, Kolton M, Cytryn E, Silber A, Rav David DR, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soiless media. Plant and Soil . 2010; 337: 481-496.

Vecstaudza D, Grantina-Ievina L, Makarenkova G, Kasparinskis R, Selga T, Steinberga V, et al. The impact of wood-derived biochar on the survival of Trichoderma spp. and growth of Secale cereale L. in sandy soil. Biocontrol Science and Technology. 2018, https://doi.org/10.1080/09583157.2018.1450488

Muter O, Grantina-Ievina L, Makarenkova G, Vecstaudza D, Strikauska S, Selga T, et al. Effect of biochar and Trichoderma application on fungal diversity and growth of Zea mays in a sandy loam soil. Environmental and Experimental Biology. 2017; 15: 289-296. https://doi.org/10.22364/eeb.15.30

Araujo AS, Bassay-Blum LE, Figueiredo CC. Biochar and Trichoderma harzianum for the Control of Macrophomina phaseolina. Brazilian Archives of Biology and Technology. 2019; 62: e19180259.

Blok C, Diaz A, Oud N, Streminska M, Huisman M, Khanh P, et al. Biochar as a carrier: Trichoderma harzianum on Biochar to promote disease suppression in Strawberry. Report WPR-893. Wageningen University & Research. 2019. https://doi.org/10.18174/501687

Imran, Amanullah, Arif M, Shah Z, Bari A. Soil application of Trichoderma and peach (Prunus persica L.) residues possesses biocontrol potential for weeds and enhances growth and profitability of soybean (Glycine max). Sarhad Journal of Agriculture. 2020; 36(1): 10-20. http://dx.doi.org/10.17582/journal.sja/2020/36.1.10.20.

Phoungthong K, Zhang H, Shao LM, He PJ. Leaching characteristics and phytotoxic effects of sewage sludge biochar. Journal of Material Cycles and Waste Management. 2018, https://doi.org/10.1007/s10163-018-0763-0.

Mayer P, Hilber I, Gouliarmou V, Hale SE, Cornelissen G, Bucheli TD. How to Determine the Environmental Exposure of PAHs Originating from Biochar. Environ. Sci. Technol. 2016; 50: 1941-1948. https://doi.org/10.1021/acs.est.5b05603

Frenkel O, Jaiswal AK, Elad Y, Lew B, Kammann C, Graber ER. The effect of biochar on plant diseases: what should we learn while designing biochar substrates? Journal of Environmental Engineering and Landscape Management. 2017; 25(2): 105-113. https://doi.org/10.3846/16486897.2017.1307202

Graber ER, Frenkel O, Jaiswal AK, Elad Y. How may biochar influence severity of diseases caused by soilborne pathogens? Carbon Management. 2014; 5(2): 169-183.

Luo S, He B, Song D, Li T, Wu Y, Yang L. Response of bacterial community structure to different biochar addition dosages in Karst Yellow soil planted with ryegrass and daylily. Sustainability 2020, 12, 2124. https://doi.org/10.3390/su12052124

Arteaga-Crespo Y, Carballo-Abreu LR, García-Quintana Y, Alonso-López M, Geada-López G. Caracterización del aserrín de Acacia mangium Willd para la obtención de biocarbón. Revista Latinoamericana de Recursos Naturales. 2012; 8(2): 90-95.

Alonso-López M, Arteaga-Crespo Y, Carballo-Abreu L, Geada-López G, García-Quintana Y, Castillo-Martínez I. Efecto del biocarbón en las propiedades físicas de diferentes sustratos orgánicos. Revista Cubana de Ciencias Forestales. 2013; 1(1): 12-22.

Pedroso-Reynaldo A, Pentón-Fernández G. Efecto físico-químico que ejerce la fuente de energía de soluciones nutritivas sobre el biochar enriquecido. Ponencia presentada en la V Convención Internacional de Agrodesarrollo 2019, Cuba. 2019.

Pentón-Fernández G, Schmidt HP, Milera-Rodríguez MC, Martín-Martín GJ, Brea-Maure O, Brunet-Zulueta J. Empleo de fertilizantes orgánicos basados en biochar producidos a partir de residuos agropecuarios. En Manejo agroecológico de los sistemas agropecuarios Usos del suelo con abonos y biochar. Pp 54-66. 2020. Estación Experimental de Pastos y Forrajes Indio Hatuey Editorial EEPF “Indio Hatuey”. ISBN: 978-959-7138-41-9

Artículos más leídos del mismo autor/a

> >>