Evaluación de la hibridación de ácidos nucleicos no radiactivo dot-blot como herramienta de detección para citrus leaf blotch virus en Cuba

Contenido principal del artículo

Lester Hernández-Rodríguez
Gabriel García-García
Juana María Pérez-Castro
Lochy Batista-Le Riverend
Victoria Zamora-Rodríguez
Inés Peña-Barzaga
Pedro Luis Ramos-González

Resumen

Se evaluó un método de hibridación de ácidos nucleicos no radioactivo en formato dot-blot para la detección precisa de citrus leaf blotch virus (CLBV: Citrivirus) en extractos de ARN totales de árboles de cítricos. Los fragmentos de ADN que conforman parcialmente los marcos de lectura abiertos que codifican la polimerasa (RdRp), la proteína de movimiento (MP) y la proteína de la cubierta (CP) de CLBV se utilizaron para generar sondas marcadas con digoxigenina (DIG-11-dUTP) mediante PCR. Para generar las sondas se utilizaron fragmentos de ADN clonados a partir del aislado de CLBV de Cuba. Se evaluaron varias condiciones de trabajo que incluyeron el uso de diferentes membranas, soluciones de hibridación y tampones de lavado. Con el método evaluado fue posible detectar hasta 40 pg de un plasmidio que contiene el genoma completo de CLBV, así como material genómico del virus en extractos de ARN de plantas de kumquat 'Nagami' (Fortunella margarita) y kumquat 'Round' (F. japonica) infectadas de forma natural con el virus. Los resultados evidenciaron que el método desarrollado es una herramienta útil y altamente recomendable, una vez sea validado, para su uso en los programas de saneamiento, cuarentena y certificación del material de propagación de cítricos en Cuba.

Detalles del artículo

Cómo citar
1.
Hernández-Rodríguez L, García-García G, Pérez-Castro JM, Batista-Le Riverend L, Zamora-Rodríguez V, Peña-Barzaga I, Ramos-González PL. Evaluación de la hibridación de ácidos nucleicos no radiactivo dot-blot como herramienta de detección para citrus leaf blotch virus en Cuba. Rev. Protección Veg. [Internet]. 8 de junio de 2020 [citado 4 de enero de 2025];34(3). Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1057
Sección
ARTÍCULOS ORIGINALES

Citas

Navarro L, Pina JA, Ballester-Olmos JF, Moreno P, Cambra M. A new graft transmissible disease found in Nagami kumquat. In: Proc. 9th Conf. of IOC; 1984; Riverside: C.A. Timmer LW and. Dodds JA (eds.); p. 234-240.

Galipienso L, Navarro L, Ballester-Olmos JF, Pina JA, Moreno P, Guerri J. Host range and symptomatology of a graft transmissible pathogen causing bud union crease of citrus on trifoliate rootstocks. Plant Pathol. 2000; 49:308-314.

Guardo M, Sorrentino G, Marletta T, Caruso A. First Report of Citrus leaf blotch virus on Kumquat in Italy. Am. Phytopathol. Soc. 2007; 91(8):1054.

Harper J, Chooi KM, Pearson MN. First Report of Citrus leaf blotch virus in New Zealand. Am. Phytopathol. Soc. 2008; 92(10):1470.

Hajeri S, Ramadugu C, Keremane M, Vidalakis G, Lee R. Nucleotide sequence and genome organization of Dweet mottle virus and its relationship to members of the family Betaflexiviridae. Arch. Virol. 2010; 155:1523-1527.

Hernández-Rodríguez L, Pérez-Castro JM, García-García G, Ramos-González PL, Zamora-Rodríguez V, Ferriol-Marchena X, Peña-Bárzaga I, Batista-Le Riverend L. Citrus leaf blotch virus in Cuba: first report and partial molecular characterization. Trop. Plant Pathol. 2016; 41:147-154.

Cao MJ, Yu Y Q, Tian X, Yang FY, Li RH, Zhou CY. First report of Citrus leaf blotch virus in lemon in China. Plant Dis. 2017; 101:1561.

Ping Li, Min LI, Song Zhang, Jun Wang, Fang-yun Yang, Meng-ji Cao, Zhong-an LI. Complete genome sequences of four isolates of Citrus leaf blotch virus from citrus in China. Journal of Integrative Agriculture. 2018; 17(3):712-715.

Chavan RR, Blouin AG, Cohen D, Pearson MN. Characterization of the complete genome of a novel citrivirus infecting Actinidia chinensis. Arch. Virol. 2013; 158(8):1679-1686.

Wang J, Zhu D, Tan Y, Zong X, Wei H, Liu Q. First Report of Citrus leaf blotch virus in Sweet Cherry. Plant Dis. 2016; 100(5):1027.

Zhu CX, Wang GP, Zheng YZ, Yang ZK, Wang LP, Xu WX, et al. RT-PCR detection and sequence analysis of coat protein gene of Citrus leaf blotch virus infecting kiwifruit trees. Acta Phytopathologica Sinica. 2016; 46:11-16.

Gress JC, Smith S, Tzanetakis IE. First report of Citrus leaf blotch virus in peony in the USA. Plant Dis. 2017; 101:637.

Guerri J, Pina JA, Vives MC, Navarro L, Moreno P. Seed transmission of Citrus leaf botch virus: Implications in quarantine and certification programs. Plant Dis. 2004; 88:906-907.

Vives MC, Martín S, Ambrós S, Renovell A, Navarro L, Pina JA, Moreno P, Guerri J. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants. Mol. Plant Pathol. 2008; 9:787-797.

Guardo M, Potere O, Castellano MA, Savino V, Caruso A. A new herbaceous host of citrus leaf blotch virus. J. Plant Pathol. 2009; 91:485-488.

Agüero J, Vives MC, Velázquez K, Ruiz-Ruiz S, Juárez J, Navarro L, et al. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Mol. Plant Pathol. 2013; 14:610-6.

Adams MJ, Candresse T, Hammond J, Kreuze JF, Martelli GP, Namba S, et al. Family Betaflexiviridae. In King AMQ, Adams MJ, Carstens EB, and Lefkowitz EJ, eds.: Virus Taxonomy: IXth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London. 2012; p. 920-941.

Galipienso L, Vives MC, Moreno P, Milne RG, Navarro L, Guerri J. Partial characterization of citrus leaf blotch virus, a new virus from Nagami kumquat. Arch. Virol. 2001; 146:357-368.

Vives MC, Galipienso L, Navarro L, Moreno P, Guerri J. The nucleotide sequence and genomic organization of Citrus leaf blotch virus: a candidate type species for a new virus genus. Virology. 2001; 287: 225-233.

Vives MC, Galipienso L, Navarro L, Moreno P, Guerri J. Characterization of two kinds of subgenomic RNAs produced by citrus leaf blotch virus. Virology. 2002; 295:328-336.

Renovell A, Gago S, Ruiz-Ruiz S, Velázquez K, Navarro L, Moreno P, et al. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation. Virology. 2010; 406:360-369.

Galipienso L, Vives MC, Navarro L, Moreno P, Guerri J. Detection of Citrus leaf blotch virus using digoxigenin-labeled cDNA probes and RT-PCR. Eur. J. Plant Pathol. 2004; 110:175-181.

Vives MC, Moreno P, Navarro L, Guerri J. Citrus leaf blotch virus. In: Rao GP, Myrta A, Ling K (eds) Characterization, Diagnosis and Management of Plant Viruses. Studium Press, Houston. 2008; p. 55-67

Ruiz-Ruiz S, Ambrós S, Vives MC, Navarro L, Moreno P, Guerri J. Detection and quantitation of Citrus leaf blotch virus by TaqMan real-time RT-PCR. J. Virol. Methods. 2009; 160:57-62.

López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr. Issues Mol. Biol. 2009; 11(1):13-46.

Ramos-González PR, Hernández-Rodríguez L, Banguela-Castillo A. Plataformas genéricas para el diagnóstico a gran escala en fitopatología [Generic platforms for high-throughput diagnosis in phytopathology]. CitriFrut. 2011; 28(1):25-7.

Roistacher CN. Graft-transmissible Diseases of Citrus. Handbook for detection and diagnosis. Food & Agriculture Org. FAO, Rome. 1991; 286 p.

Vives MC, Rubio L, Galipienso L, Navarro L, Moreno P, Guerri J. Low genetic variation between isolates of Citrus leaf blotch virus from different host species and different geographical origins. J. Gen. Virol. 2002; 83:2587-2591.

Lion T, Haas OA. Nonradioactive labeling of probe with digoxigenin by polymerase chain reaction. Anal. Biochem. 1990; 188(2):335-337.

Sambrook J, Fritsch EF and Maniatis T. Molecular hybridization. In: Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 1989: p. 931-937.

Holtke HJ, Sagner G, Kessler C, Schmitz G. Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: a fast and simple prototocol and its applications. Biotechniques. 1992; 12:104-113.

Yadav N, Khurana SMP. Plant Virus Detection and Diagnosis: Progress and Challenges. In: Frontier Discoveries and Innovations in Interdisciplinary Microbiology. Springer India, New Delhi. 2016; p. 97-132.

OIE. OIE Standard for Management and Technical Requirements for Laboratories Conducting Tests for Infectious Diseases. OIE Quality Standard and Guidelines for Veterinary Laboratories: Infectious Diseases. OIE, Paris, France. 2008; p. 1-31.

Llanes-Alvarez Y, Hernández-Rodríguez L, Peña-Bárzaga I. La validación de métodos de diagnóstico como herramienta en los programas de vigilancia y manejo de fitopatógenos. CitriFrut. 2017; 34(1):46-54.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.