Efecto de aceites esenciales y componentes seleccionados sobre Heterorhabditis amazonensis Andaló et al. cepa HC1

Contenido principal del artículo

Oriela Pino Pérez
Damiana Roselló García
Belkis Peteira Delgado-Oramas
Roberto Enrique Regalado
Ileana Miranda Cabrera
Mayra G. Rodríguez Hernández

Resumen

Se investigó en laboratorio el efecto de cuatro aceites esenciales (Melaleuca quinquenervia (Cav) S.T. Blake; Citrus sinensis (L.) Osbeck; Piper aduncum subsp. ossanum (C. DC.) Saralegui y Piper auritum Kunth) y 11 componentes seleccionados sobre los juveniles infectivos (JI) Heterorhabditis amazonensis Andaló et al. cepa HC1. Se determinó la susceptibilidad de esta cepa a siete disolventes orgánicos y tensoactivos por inmersión. Los efectos tóxicos letales de los aceites y componentes sobre los JI se evaluaron por exposición directa en placas de 24 pocillos (24 h). El bioensayo de infectividad Uno-Uno se utilizó para evaluar el efecto tóxico subletal de los aceites esenciales sobre los JI. Los datos de los ensayos del efecto tóxico letal de disolventes orgánicos /tensoactivos y de componentes de aceites esenciales se sometieron a ANOVA y las medias se compararon (Duncan; 0, 05 %); mientras que, los del ensayo del efecto tóxico subletal, se analizaron mediante comparación múltiple de proporciones (Método de Wald, nivel de confianza de 0,05). El Tritón X-100 al 0,5 % evidenció baja toxicidad sobre los JI y se puede utilizar en ensayos de compatibilidad de productos químicos con esta cepa. Los aceites esenciales de M. quinquenervia y C. sinensis no provocaron un efecto tóxico letal significativo sobre los JI de H. amazonensis cepa HC1; los aceites de P. aduncum subsp. ossanum y P. auritum produjeron moderada mortalidad. Estos cuatro aceites esenciales no causaron efectos subletales sobre la infectividad de los JI de H. amazonensis cepa HC1. Los componentes de aceites esenciales canfeno, p-cimeno y piperitona no afectaron a los JI de H. amazonensis cepa HC1; 1,8-cineol, limoneno, alcanfor y metil chavicol mostraron toxicidad moderada y carvacrol, eugenol, linalol y timol fueron altamente tóxicos a los JI. De acuerdo con los parámetros evaluados, los aceites esenciales de M. quinquenervia y C. sinensis y los componentes canfeno, p-cimeno y piperitona son compatibles con H. amazonensis cepa HC1.

Detalles del artículo

Cómo citar
1.
Pino Pérez O, Roselló García D, Peteira Delgado-Oramas B, Enrique Regalado R, Miranda Cabrera I, Rodríguez Hernández MG. Efecto de aceites esenciales y componentes seleccionados sobre Heterorhabditis amazonensis Andaló et al. cepa HC1. Rev. Protección Veg. [Internet]. 17 de mayo de 2021 [citado 4 de enero de 2025];36(1). Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1120
Sección
ARTÍCULOS ORIGINALES

Citas

Singh Chouhan KB, Tandey R, Sen KK, Mehta R, Mandal V. Critical analysis of microwave hydrodiffusion and gravity as a green tool for extraction of essential oils: Time to replace traditional distillation. Trends Food Sci Technol. 2019;92:12-21.

Nollet LML, Rathore HS. Green Pesticides Handbook Essential Oils for Pest Control. Nollet LML, Rathore HS, editors. Boca Raton, FL: Taylor & Francis, CRC Press; 2017. 3-523 p.

Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem Rev. 2019;9.

Rathore HS. Green Pesticides for Organic Farming: Occurrence and Properties of Essential Oils for Use in Pest Control. In: Nollet LML, Rathore HS, editors. Green Pesticides Handbook: Essential Oils for Pest Control. Boca Raton, FL: Taylor & Francis Group, CRC Press; 2017. p. 3-26.

Pino O, Sánchez Y, Rojas MM, Rodríguez H, Abreu Y, Duarte Y, et al. Composición quimica y actividad plaguicida del aceite esencial de Melaleuca quinquenervia (Cav) S.T. Blake. Rev. Protección Veg. 2011;26(3):177-86.

Pino O, Sánchez Y, Rodríguez H, Correa T., Demedio J, Sanabria J. Caracterización química y actividad acaricida del aceite esencial de Piper aduncum subsp. ossanum frente a Varroa destructor. Rev. Protección Veg. 2011;26(1):52-61.

Duarte Y, Pino O, Infante D, Sánchez Y, Travieso C, Martínez B. Efecto in vitro de aceites esenciales sobre Alternaria solani Sorauer. Rev. Protección Veg. 2013;28(1):54-9.

Stock SP. Diversity, biology and evolutionary relationships. In: Campos-Herrera R, editor. Nematode Pathogenesis of Insects and Other Pests-Ecology and Applied Technologies for Sustainable Plant and Crop Protection. Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK,: Springer; 2015. p. 3-28.

Shamseldean MM, A.F. S, Gesraha MA, Montasser SA, Ibrahim SA. Utilization of Entomopathogenic Nematodes Combined with Plant Extracts and Plant Essential Oils against Grasshopper, Heteracrir littoralis. J Basic Appl Sci Res. 2013;3(11):289-94.

Iqbal S, Jones MGK. Nematodes. In: Thomas B, Murray BG, Murphy DJBT, editors. Encyclopedia of Applied Plant Sciences, Volume 3. 2nd ed. Oxford: Academic Press; 2017. p. 113-9.

Simmons AM, Wakil W, Qayyum MA, Ramasamy S, Kuhar TP, Philips CR. Lepidopterous Pests: Biology, Ecology, and Management. In: Wakil W, Brust GE, Perring T, editors. Sustainable Management of Arthropod Pests of Tomato. San Diego: Academic Press; 2018. p. 131-62.

Rodríguez MG. Entomopathogenic nematodes in Cuba: From laboratories to popular biological control agents for pest management in a developing country. In: Campos-Herrera R, editor. Nematode Pathogenesis of Insects and Other Pests-Ecology and Applied Technologies for Sustainable Plant and Crop Protection. Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK: Springer; 2015. p. 343-364.

San-Blas E, Campos-Herrera R, Dolinski C, Monteiro C, Andaló V, Garrigós Leite L, et al. Entomopathogenic nematology in Latin America: A brief history, current research and future prospects. J Invertebrate Pathol. 2019;165:22-45.

Monteiro C, Lage TC de A, Marchesini P, Vale L, Perinotto WM de S, Lopes WDZ, et al. Combination of entomopathogenic nematodes with acaricides or essential oil of Lippia triplinervis against Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol Reg Stud Reports. 2021;23:100526.

Laznik Z, Trdan S. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Manag Sci. 2014; 70(5):784-789. doi: 10.1002/ps.3614.

Choi, I-H.; Kim J. Nematicidal activity of monotherpenoids against the pine wood nematode (Bursaphelenchus xylophilus). Russ J Nematol. 2007;15(1): 35-40.

Laznik Ž, Vidrih M, Trdan S. The effects of different fungicides on the viability of entomopathogenic nematodes Steinernema feltiae (Filipjev), S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (Nematoda: Rhabditida) under . Chil J Agric Res. 2012;72 (1):62-7.

Subramanian S, Muthulakshmi M. Entomopathogenic Nematodes. In: Omkar B, editor. Ecofriendly Pest Management for Food Security. San Diego: Academic Press; 2016. p. 367-410.

Castruita-Esparza G, Bueno-Pallero F, Blanco-Pérez ÁR, Dionísio L, Aquino-Bolaños T, Campos-Herrera R. Activity of Steinernema colombiense in plant-based oils. J Nematol. 2020;52(e2020-72):1-12.

International Standarization Organization (ISO). ISO 6571. Spices, condiments and herbs. Determination of volatile oil content. 1984;88.

Sánchez L. Heterorhabditis bacteriophora HC1. Estrategia de desarrollo como agente de control biológico de plagas insectiles. Cuba. [Tesis en opción al Título de Doctor en Ciencias Agrícolas]. Universidad Agraria de La Habana, Cuba. 2002. 100 pp.

Sánchez L, Rodríguez MG, Gómez L, Soler DM, Hernández MA, Castellanos L, et al. Desarrollo de una metodología para la reproducción artificial de nematodos entomopatógenos para el control de plagas en cafeto. Metodologías Depositadas en Centro de Derechos de Autor (http://www.cenda.cult.cu), Cuba, número 09613/ 2002; 2001.

Enrique R, Sánchez L, Rodríguez MG, Gómez L, Valle Z. Dietas alternativas para la cría de Galleria mellonella. Influencia sobre el rendimiento - peso de larvas de Galleria mellonella y recobrado de juveniles infectivos. Centro Nacional de Derecho de Autor (CENDA). Deposit number CENDA2874-2006. Ciudad de la Habana, Cuba; 2006.

Kim J, Seo S-M, Lee S-G, Shin S-C, Park I-K. Nematicidal Activity of Plant Essential Oils and Components from Coriander (Coriandrum sativum), Oriental Sweetgum (Liquidambar orientalis), and Valerian (Valeriana wallichii) Essential Oils against Pine Wood Nematode (Bursaphelenchus xylophilus). J Agric Food Chem. 2008;56:7316-20.

Adenubi OT, McGaw LJ, Eloff JN, Naidoo V. In vitro bioassays used in evaluating plant extracts for tick repellent and acaricidal properties: A critical review. Vet Parasitol. 2018;254:160-71.

Glazer I, Lewis EE. Bioassays of Entomopathogenic Nematodes. In: Navon A, Ascher KRS, editors. Bioassays of entomopathogenic microbes and nematodes. Wallingford Oxon, UK: CABI Publishing; 2000. p. 229-48.

Pino O, Sánchez Y, Rojas MM, Abreu Y, Correa TM. Composición química y actividad antibacteriana del aceite esencial de Pimpinella anisum L . Rev Protección Veg. 2012;27(3):181-7.

Castillo Duvergel Y, Miranda I. COMPAPROP: Sistema para comparación de proporciones múltiples. Rev Protección Veg. 2014;29(3):231-4.

Saad NY, Muller CD, Lobstein A, Muller D, Lobstein A, Muller CD, et al. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr J. 2013;28(5):269-79.

Choi I-H, Park J-Y, Shin S-C, Kim J, Park I-K. Nematicidal activity of medicinal plant essential oils against the pinewood nematode (Bursaphelenchus xylophilus). Appl Entomol Zool. 2007;42(3):397-401.

Stuart R, Gaugler R. Genetic adaptation and founder affect in laboratory populations of the entomopathogenic nematode Steinernema glaseri. Can J Zool. 1996;74:164-70.

Alumai A, Grewal PS. Tank-mix compatibility of the entomopathogenic nematodes, Heterorhabditis bacteriophora and Steinernema carpocapsae, with selected chemical pesticides used in turfgrass. Biocontrol Sci Technol. 2004;14(7):725-30.

Krishnayya P V, Grewal PS. Effect of Neem and Selected Fungicides on Viability and Virulence of the Entomopathogenic Nematode Steinernema feltiae. Biocontrol Sci Technol. 2002;12:259-66.

Koppenhofer AM, Grewal PS. Compatibility and Interactions with Agrochemicals and Other Biocontrol Agents. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI, editors. Nematodes as Biocontrol Agents. Wallingford Oxfordshire UK: CABI Publishing; 2005. p. 363-81.

Burt S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol. 2004 Aug;94(3):223-53.

Ntalli NG, Caboni P. Botanical nematicides: A review. J Agric Food Chem. 2012;60(40):9929-40.

Sherwani SI, Khan HA. Modes of action of biopesticides. In: Biopesticides Handbook. 2015. p. 51-68.

Sánchez Y, Correa TM, Abreu Y, Pino O. Efecto del aceite esencial de Piper auritum Kunth y sus componentes sobre Xanthomonas albilineans (Ashby) Dowson y Xanthomonas campestris pv. campestris (Pammel) Dowson. Rev Protección Veg. 2013;28(3):204-10.

Artículos más leídos del mismo autor/a

> >>