Desarrollo embrionario y larval de Feltia subterranea Fabricius (Lepidoptera: Noctuidae) en Cuba

Contenido principal del artículo

Lázaro Cuellar Yanes
María A. Martínez Rivero

Resumen

En el presente trabajo se describen aspectos sobre la duración del desarrollo embrionario y larval del gusano cortador granulado Feltia subterranea Fabricius. La primera generación de larvas se encontró alimentándose sobre plántulas de tomate (Solanum lycopersicum L.) en la finca “Las Piedras” del municipio Guanabacoa, La Habana, Cuba, el mes de octubre de 2017. Para el establecimiento de la cría, se trasladaron larvas al laboratorio de Entomología-Acarología del Centro Nacional de Sanidad Agropecuaria (CENSA) y se mantuvieron de forma independiente en jaulas de malla. Se utilizaron plántulas de tomate de la variedad angean para su alimentación hasta concluir esa fase. En la fase adulta, se realizaron apareamientos de hembras y machos de forma independiente; se realizaron observaciones diarias para determinar el momento de oviposición y su duración. Los huevos depositados en un mismo día se emplearon para determinar el tiempo de desarrollo embrionario, la duración de la fase larval y el número de estadios larvales. El desarrollo embrionario demoró cuatro días. Los huevos siempre se depositaron en grupos en hojas jóvenes de las plantas. El insecto presentó seis estadios larvales y el periodo larval duró 15 días. Se observó un comportamiento gregario durante la fase larval, más marcado durante los primeros instares.

Detalles del artículo

Cómo citar
Cuellar Yanes, L., & Martínez Rivero, M. A. (2021). Desarrollo embrionario y larval de Feltia subterranea Fabricius (Lepidoptera: Noctuidae) en Cuba. Revista De Protección Vegetal, 36(3). Recuperado a partir de https://revistas.censa.edu.cu/index.php/RPV/article/view/1152
Sección
COMUNICACIONES CORTAS

Citas

Barro A, Núñez R. Introducción a los Lepidópteros de Cuba. En: Larramendi JA, Barro A, Núñez R. Lepidópteros de Cuba. Finlandia: UPC Print, Vaasa. 2011: 8-19.

Salas-Araiza MD, Guzmán-Mendoza R, Martínez-Jaime OA, González-Márquez MA, López Figueroa A. Species richness of noctuid moths (Lepidoptera: Noctuidae) from the State of Guanajuato, Mexico. Florida Entomologist. 2015;98(4): 1262-1265.

Kriti JS, Dar MA, Khan ZH. Biological and Taxonomic Study of Agriculturally Important Noctuid Pests of Kashmir. World Journal of Agricultural Research. 2014;2(2): 82-87.

Venkateshalu M, Kotikal YK, Shashank PR, Patil S, Allolli TB. Diversity of noctuid moths associated with major vegetable crops in Karnataka. J. Entomol. Res. 2017;41(2): 187-192.

Simmons AM, Wakil W, Qayyum MA, Ramasamy S, Kuhar TP, Philips CR. Lepidopterous Pests: Biology, Ecology, and Management. En: Wakil W, Brust GE, Perring TM. Sustainable Management of Arthropod Pests of Tomato. Cambridge, MA, USA: Academic Press. 2017: 131-162.

Mayorie AC. Importancia y consideraciones del cultivo del tomate. En: Zolezzi VM, Abarca PR, Torres AP. Manual del cultivo de tomate al aire libre. Chile: Boletín INIA No3;2017: 11-18.

Madruga OR, Barro AC. Ciclo de vida y descripción de los estadios inmaduros de Battus polydamas cubensis (Lepidoptera: Papilionidae) en Cuba. Solenodon. 2011;9: 36-54.

León GF, Barro A. Immature Stages and Life Cycle of the Wasp Moth, Cosmosoma auge (Lepidoptera: Erebidae: Arctiinae) under laboratory conditions. Hindawi Publishing Corporation. 2014: 1-6.

Capinera JL. Granulate Cutworm, Feltia subterranea (Fabricius) (Insecta: Lepidoptera: Noctuidae). UF/IFAS Extension. 2019: 1-4.

Webb SE, Niño A, Smith HA. Manejo de Insectos en Crucíferas (Cultivos de Coles) (Brócoli, Repollo, Coli¬flor, Col, Col Rizada, Mostaza, Rábano, Nabos). UF/IFAS Extension. 2019: 1-30.

Jones TH. The granulated cutworm, an important enemy of vegetable crops in Louisiana. USDA Bulletin. 1918;703: 7–14.

Snow JW, Callahan PS. Biological and morphological studies of the granulate cutworm, Feltia subterranea (F) in Georgia and Louisiana. Georgia Agricultural Experiment Station Bulletin. 1968; 42:1-23.

Sweetman HL, Whittemore FW. The number of molts of the firebrat (Lepismatidae, Thysanura). Bulletin of the Brooklyn Entomological Society. 1937;32: 117-120.

Daly HV. Insect morphometrics. Annual Review of Entomology.1985;30: 415-438.

Nylin S, Gotthard K. Plasticity in life-history traits. Annual Review of Entomology.1998;43: 63-83.

Martínez E, Barrios Sanromá G, Rovesti L, Santos Palma R. Eds. Manejo Integrado de Plagas. Manual Práctico. Centro Nacional de Sanidad Vegetal (CNSV), Cuba. Editora Entre Pueblos, España. Grupo di Volontariato Civile (GVC), Italia. 2006: 485 pp.

Scott JA. The butterflies of the North America. Standford Univ. Press, California. 1986.

Stamp NE. Egg deposition patterns in Butterflies: Why do some species cluster their eggs rather than deposit them singly? The American Naturalist. 1980;115(3): 367–380.

Courtney SP. The evolution of egg clustering by butterflies and other insects. American Naturalist.1984;123: 276–281.

Fordyce JA. Aggregative feeding of pipevine swallowtail larvae enhances host plant suitability. Oecologia. 2003;135: 250- 257.

Matzumoto KF, Tsubaki Y. Egg cluster size variation in relation to the larval food abundant in Luehdorfia puziloi (Lepidoptera: Papilionidae). Res Popul Ecol. 1993;35: 325-333.

Hunter AF. Gregariousness and repellent defences in the survival of phytophagous insects. Oikos. 2000;91(2): 213–224.

Coscollá R. Incidencia de los factores climatológicos en la evolución de las plagas y enfermedades de las plantas. Bol. Serv. Plagas. 1980; 6: 123-139.

Marco V. Modelización de la tasa de desarrollo de insectos en función de la temperatura. Aplicación al Manejo Integrado de Plagas mediante el método de grados-día. Aracnet. 2001;7(27):147-150.

Duarte HW, Polanía IZ. Efecto de la temperatura sobre el desarrollo de Eriopis connexa connexa (Germar) (Coleoptera: Coccinellidae). Rev. U.D.C.A Act. & Div. Cient. 2009;12(2): 135-145.

Lee BL, Bass MH. Rearing Technique for the Granulate Cutworm1 and Some Effects of Temperature on Its Life Cycle 2. Annals of the Entomological Society of America. 1969;62(5): 1216-1217.

Matzumoto K. Effects of aggregation on the survival and development on different host plants in a papilionid butterfly, Luehdorfia japonica Leech. Jpn. J. Ent. 1989;57(4): 853- 860.

Reader T, Hochuli F. Understanding gregariousness in a larval Lepidopteran: the roles of host plant, predation, and microclimate. Ecological Entomology. 2003;28: 729–737.

Clark BR, Faeth SH. The consequences of larval aggregation in the butterfly Chlosynelacinia. Ecological Entomology. 1997; 22: 408–415.

Denno RF, Benrey B. Aggregation facilitates growth in The Neotropical nymphalid butterfly Chlosynejanais. Ecological Entomology.1997; 22: 133–141.

Long D. Effects of population density on larvae of Lepidoptera. Trans. R. Entomol. Soc. Lond. 1953; 104: 543-585.

Artículos más leídos del mismo autor/a