Efectos de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg y Azofert ® sobre el crecimiento y desarrollo de Phaseolus vulgaris L.

Contenido principal del artículo

Ivonne González-Marquetti
Danay Ynfante-Martínez
Susana Gorrita
Belkis Morales-Mena
María Caridad Nápoles
Belkis Peteira Delgado-Oramas
Benedicto Martínez-Coca

Resumen

El objetivo de este trabajo fue evaluar el efecto combinado de tres cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg (Ta. 13, Ta. 78 y Ta. 90) con Azofert® (Rhizobium leguminosarum cepa CF1) sobre el crecimiento y desarrollo de plantas de frijol común Phaseolus vulgaris L. (cv. 'BAT-304') en condiciones semicontroladas. Las evaluaciones se realizaron en plantas de 32 días, sembradas en dos momentos: 1) siembra e inoculación de Trichoderma en el suelo al unísono; 2: siembra de las plantas siete días después de la inoculación del suelo con el hongo. Se determinó la altura de las plantas, la longitud de la raíz, el número de hojas, flores, zarcillos y vainas, la masa fresca y seca del área foliar y radicular, la capacidad endófita de Trichoderma en las raíces, la efectividad de nodulación de Rhizobium y la inducción de enzimas peroxidasas (POD), polifenoloxidasas (PPO) y fenilalanina amonio liasas (PAL). Los resultados de los tratamientos, en ambas formas de inoculación, se contrastaron según análisis de varianza simple seguido de la prueba de mínima diferencia significativa. Se comprobó la capacidad de las cepas de T. asperellum estudiadas de colonizar endofíticamente las raíces de P. vulgaris (cv. 'BAT-304') y su compatibilidad con Azofert®, en condiciones controladas. De manera general, los tratamientos a los que se les aplicó T. asperellum desde el momento de la siembra presentaron los mejores valores de los parámetros de crecimiento y desarrollo evaluados. La coinoculación de las cepas Ta. 13 y Ta. 78 con Azofert® tuvo un efecto sinérgico sobre la estimulación del crecimiento y la expresión de enzimas de defensa PAL, PPO y POD de P. vulgaris.

Detalles del artículo

Cómo citar
1.
González-Marquetti I, Ynfante-Martínez D, Gorrita S, Morales-Mena B, Nápoles MC, Delgado-Oramas BP, Martínez-Coca B. Efectos de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg y Azofert ® sobre el crecimiento y desarrollo de Phaseolus vulgaris L. Rev. Protección Veg. [Internet]. 10 de octubre de 2021 [citado 5 de enero de 2025];36(3). Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1171
Sección
ARTÍCULOS ORIGINALES

Citas

Hernández Morales A. (Coordinación y Revisión General). La cadena de valor del frijol común en Cuba. Estudio de su situación en siete municipios de las provincias de Sancti Spíritus y Villa Clara. Editado por Programa de apoyo al fortalecimiento de cadenas agroalimentarias a nivel local (AGROCADENAS). 2016:175 pp. ISBN: 978-959-296-045-9

Nuñez-Vázquez MC, Delgado-Acosta C, López-Padrón I, Martínez-González L, Reyes-Guerrero Y, Pérez-Domínguez G, et al. Nuevo bioestimulante y su influencia en la producción de frijol común. Cultivos Tropicales. 2020; 41(4):e08 Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362020000400008&lng=es&nrm=iso

Carreras Solís B. Bioplaguicidas y Biofertilizantes. Tendencia de uso en LABIOFAM, Cuba. Cultura Científica y Tecnología. 2018; 15(66):15-19. http://dx.doi.org/10.20983/culcyt.2018.3.3

Nápoles MC, Cabrera JC, Onderwater R, Wattiez R, Hernández I, Martínez L, Núñez M. Señales en la interacción Rhizobium leguminosarum-frijol común (Phaseolus vulgaris L.). Cultivos Tropicales. 2016; 37(2):37-44.

Martínez B, Infante D, Peteira B. Taxonomía polifásica y variabilidad en el género Trichoderma. Rev. Protección Veg. 2015; 30 (especial):11-22.

Hermosa R, Viterbo A, Chet I, Monte E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology. 2012; 158:17-25. doi: 10.1099/mic.0. 052274-0

Cruz A, Rivero D, Echevarría A, Infante D, Martínez B. Trichoderma asperellum en el manejo de hongos fitopatógenos en los cultivos de arroz (Oryza sativa L.), frijol (Phaseolus vulgaris L.) y soya (Glycine max L.). Rev. Protección Veg. 2015; 30(supl.1):87-87.

Martínez-Coca BV. Diagnóstico, caracterización y algunas alternativas de manejo de enfermedades en cultivos de importancia económica. Rev. Protección Veg. 2013; 28(3):237-237.

González-Marquetti I, Infante-Martínez D, Arias-Vargas Y, Gorrita-Ramírez S, Hernández-García T, de la Noval-Pons BM, et al. Efecto de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar 'BAT-304'. Rev. Protección Veg. 2019; 34(2):e05. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522019000200004&lng=es.

Costales D, Nápoles MC, Núñez M, Falcón A. Influencia de un análogo de brasinoesteroide sobre la nodulación de plántulas de soya (Glycine max (L) Merril. Cultivos Tropicales. 2008; 29(2):65-69.

Febles-González JM, Vega MB, do Amaral-Sobrinho NMB. La degradación de los suelos ferralíticos rojos en el Occidente de Cuba. I Seminario Internacional de Manejo Sostenible de Suelos Agrarios y de Recursos Naturales. 2013.

Peteira B, Dueñas F, Arias Y, Martínez Y, Pino O. Caracterización de materiales promisorios de tomate obtenidos en el programa de mejoramiento para la resistencia al TYLCV. Fitopatología. 2008;43(3):105-119.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat [programa de cómputo]. Córdoba, Argentina: Universidad Nacional de Córdoba; 2017 [Disponible en: http://www.infostat.com.ar/).

Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK. Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int. J. Environ. Agric. Biotech. 2013; 6(2):255-259.

Zhao L. y Zhang Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agric. 2015; 14(8):1588-1597.

Gabre VV, Venancio WS, Moraes BA, Furmam FG, Galvão CW, Daniel Ruiz Potma Gonçalves, et al. Multiple Effect of Different Plant Growth Promoting Microorganisms on Beans (Phaseolus vulgaris L.) Crop. Braz. Arch. Biol. Technol. 2020; 63: e20190493.

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, et al. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 2011; 9:749-759.

Neelipally RTKR, Anoruo AO, Nelson S. Effect of Co-Inoculation of Bradyrhizobium and Trichoderma on growth, development, and yield of Arachis hypogaea L. (Peanut). Agronomy 2020; 10:1415. doi:10.3390/agronomy10091415.

Freitas-Chagas Junior A, Gonçalves de Oliveira A, Rodrigues dos Santos G, Barbosa- Reis H, França-Borges Chagas L, Oliveira-Miller L. Combined inoculation of rhizobia and Trichoderma spp. on cowpea in the savanna, Gurupi-TO, Brazil. Revista Brasileira de Ciências Agrárias. 2015; 10(1):27-33.

Martinez-Medina A, Pozo MJ, Cammue BPA, Vos CMF. Belowground Defence Strategies in Plants: The Plant-Trichoderma Dialogue. In: Vos C., Kazan K. (eds) Belowground Defence Strategies in Plants. Signaling and Communication in Plants. Springer, Cham. 2016. https://doi.org/10.1007/978-3-319-42319-7_13

Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological control. 2009; 51(3):409-416.

Mweetwa AM, Chilombo G, Gondwe BM. Nodulation, nutrient uptake and yield of common bean inoculated with Rhizobia and Trichoderma in an acid soil. J. Agric. Sci. 2016; 8(12):61-71.

Mora Y, Díaz R, Vargas-Lagunas C, Peralta H, Guerrero G, Aguilar A, et al. Nitrogen-fixing rhizobial strains isolated from common bean seeds: phylogeny, physiology, and genome analysis. Applied and Environmental Microbiology. 2014; 80(18):5644-5654.

Peralta H, Aguilar A, Díaz R, Mora Y, Martínez-Batallar G, Salazar E, et al. Genomic studies of nitrogen-fixing rhizobial strains from Phaseolus vulgaris seeds and nodules. BMC Genomics. 2016; 17:711. https://doi.org/10.1186/s12864-016-3053-z

Saber WlA, Abd ELHal KM, Ghonocm KM. Synergistic effect of Trichoderma and Rhizobium on both biocontrol of chocolate spot disease and induction of nodulation, physiological activities and productivity of Vicia faba. Res. J. Microbiol. 2009; 4(8):286-300

Boeckk T, Winters AL, Webb KJ, Kingston-Smith AH. Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J. Exp. Bot. 2015; 66(12):3571-3579.

Sarma BK, Yadav SK, Singh S, Singh HB. Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy. Soil Biol. Biochem. 2015; 87:25-33. doi: 10.1016/j.soilbio.2015.04.001

Peteira Delgado-Oramas B. La resistencia inducida como alternativa para el manejo de plagas en las plantas de cultivo. Rev. Protección Veg. 2020; 35(1):e07. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522020000100001&lng=es.

Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl. Soil Ecol. 2000; 15(2):169-182. ISSN 0929-1393, https://doi.org/10.1016/S0929-1393(00)00093-7

Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manage. 2020; 257:109982. ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2019.109982

Kavadia A, Omirou M, Fasoula DA, Louka F, Ehaliotis C, Ioannides IM. Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Appl. Soil Ecol. 2021; 167:104013. ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2021.104013

Bécquer-Granados CJ, Puentes-Pérez AB, Ávila-Cordoví U, Quintana-Sanz M, Galdo-Rodríguez Y, Medinilla-Nápoles F, et al. Efecto de la inoculación con Bradyrhizobium sp. y Trichoderma harzianum en triticale (X. Triticosecale Wittmack), en condiciones de estrés por sequía. Pastos y Forrajes. 2016; 39(1):19-26. Disponible en <http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S086403942016000100003&lng=es&nrm=iso>.

Bizos G, Papatheodorou EM, Chatzistathis T, Ntalli N, Aschonitis VG, Monokrousos N. The role of microbial inoculants on plant protection, growth stimulation, and crop productivity of the olive tree (Olea europea L.). Plants (Basel). 2020; 9(6):743. doi:10.3390/plants9060743.

Artículos más leídos del mismo autor/a

> >>