Efecto de la interacción entre dos especies de miridos depredadores (Hemiptera: Miridae) en la presa Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Contenido principal del artículo

Leticia Duarte Martínez
María de los Ángeles Martínez Rivero
Vanda Helena Paes Bueno

Resumen

Los estudios sobre sistemas con múltiples especies depredadoras han demostrado que las interacciones entre especies pueden no ser predecibles y dependen, en gran medida, de los rasgos de comportamiento individuales, la densidad de las especies y la complejidad del hábitat. Se examinaron las interacciones de dos míridos depredadores: Macrolophus basicornis (Stal) y Engytatus varians (Distant) (Hemiptera: Miridae) con la plaga Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), estimando los efectos positivos o negativos de su combinación mediante un modelo de riesgo multiplicativo (MRM). Se estimó la eficacia de las especies de míridos, individualmente y mixtas, contra los huevos y las larvas de la plaga, mediante las tasas de depredación durante 24 horas en condiciones de laboratorio. Ambas especies de míridos prefirieron los huevos y las larvas de primer estadio de T. absoluta. Su combinación fue positiva al alimentarse de estos estadios de la plaga, pero negativa en el segundo estadio larvario. Los resultados, basados en las tasas de depredación, mostraron que M. basicornis tiene una mayor capacidad de depredación en comparación con E. varians sobre las larvas de primer estadio de T. absoluta, pero ambos míridos son buenos candidatos como agentes de control biológico de T. absoluta en el cultivo del tomate.

Detalles del artículo

Cómo citar
1.
Duarte Martínez L, Martínez Rivero M de los Ángeles, Paes Bueno VH. Efecto de la interacción entre dos especies de miridos depredadores (Hemiptera: Miridae) en la presa Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Rev. Protección Veg. [Internet]. 30 de septiembre de 2022 [citado 2 de enero de 2025];37(3):https://cu-id.com/2247/v37n3e11. Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1276
Sección
ARTÍCULOS ORIGINALES

Citas

Guedes RNC, Picanço MC. The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. Bulletin OEPP/EPPO. 2012;42:211-216. https://doi.org/10.1111/epp.2557

Urbaneja A, Vercher R, Navarro V, García MF, Porcuna JL. La polilla del tomate, Tuta absoluta. Phytoma España. 2007;194:16-23.

Toševski I, Jović J, Mitrović M, Cvrković T, Krstić O, Krnjajić S. Tuta absoluta (Meyrick, 1917) (Lepidoptera, Gelechiidae): a New Pest of Tomato in Serbia. Pesticides & Phytomedicine. 2011;3:197-204. https://doi.org/10.2298/PIF1103197T

Biondi A, Guedes NRC, Wan F, Desneux N. Ecology, worldwide spread, and management of the invasive south american tomato pinworm, Tuta absoluta: Past, present, and future. Annual Review of Entomology. 2018;63:239-58. https://doi.org/10.1146/annurevento-031616-034933

CABI Head Office, Wallingford, UK. Distribution Maps of Plant Pests, Tuta absoluta. [Distribution map]. Map 723(1st revision). 2016. Consulted: 29/3/2018 available online: http://www.cabi.org/isc/datasheet/49260

Verheggen F, Bertin R. First record of Tuta absoluta in Haiti. Entomologia Generalis. 2019; 38:349-353. https://doi.org/10.1127/entomologia/2019/0778

Bueno VHP, van Lenteren JC, Lins Jr, Calixto AM, Montes F, Silva D, et al. New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. Journal Applied Entomology. 2013;137:29-34. https://doi.org/10.1111/jen.12017

Han P, Bayram Y, Shaltiel‐Harpaz L, Sohrabi F, Saji A, Esenali UT, et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. Journal of Pest Science. 2018. https://doi.org/10.1007/s10340-018-1062-1

Haddi K, Berger M, Bielza P, Rapisarda C, Williamson MS, Moores G, et al. Mutation in the ace-1 gene of the tomato leaf miner (Tuta absoluta) associated with organophosphates resistance. Journal Applied Entomology. 2017. https://doi.org/10.1111/jen.12386

Biondi A, Guedes NRC, Wan F, Desneux N. Ecology, worldwide spread, and management of the invasive south american tomato pin- worm, Tuta absoluta: Past, present, and future. Annu Rev Entomol. 2018;63:239-258 https://doi.org/10.1146/annurevento-031616-034933

Siqueira HA, Guedes RN, Picanco MC. Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural Entomology. 2000;2:147-153.

Biondi A, Zappalà L, Stark JD, Desneux N. Do Biopesticides Affect the Demographic Traits of a Parasitoid Wasp and Its Biocontrol Services through Sublethal Effects? PLoS ONE. 2013;9: e76548. https://doi.org/10.1371/journal.pone.0076548

Zappalà L, Siscaro G, Biondi A, Mollá O, González‐Cabrera J, Urbaneja A. Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. Journal of Applied Entomology. 2012;6:401-409. https://doi.org/10.1111/j.1439-0418.2011.01662.x

Calvo FJ, Lorente MJ, Stansly PA, Belda JE. Preplant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisia tabaci in greenhouse tomato. Entomologia Experimetalis et Applicata. 2012;143:111-119 https://doi.org/10.1111/j.1570-7458.2012.01238.x

van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. 2018a;63:39-59. https://doi.org/10.1007/s 10526-017-9801-4.

Urbaneja A, Monton H, Mollá O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal Applied Entomology. 2009;133:292-296. https://doi.org/10.1111/j.1439-0418.2008.01319.x

Moreno-Ripoll R, Agustí N, Berruezo R, Gabarra R. Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biological Control. 2012;62:189-196. https://doi.org/10.1016/j.biocontrol.2012.04.005

Lampropoulos P, Perdikis D, Fantinou A. Are multiple predator effects directed by prey availability? Basic and Applied Ecology. 2013;14:605-613. https://doi.org/10.1016/j.baae.2013.08.004

Perdikis D, Lucas E, Garantonakis N, Giatropoulos A, Kitsis P, Maselou D, et al. Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biological Control. 2014;70:35-41. https://doi.org/10.1016/j.biocontrol.2013.12.003

Ferreira PS, da Silva E, Coelho LB. Miridae (Heteroptera) fitófagos e predadores de Minas Gerais, Brasil, com ênfase em espécies com potencial econômico. Iheringia, Série Zoologia. 2001;91:159-169.

Silva DB, Bueno VHP, Montes FC, van Lenteren JC. Population growth of three mirid predatory bugs feeding on eggs and larvae of Tuta absoluta on tomato. BioControl. 2016. https://doi.org/10.1007/s10526-016-9736-1

van Lenteren JC, Hemerik L, Lins Jr and Bueno VHP. Functional Responses of Three Neotropical Mirid Predators to Eggs of Tuta absoluta on Tomato. Insects. 2016;7:34. https://doi.org/10.3390/insects7030034.

van Lenteren JC, Bueno VHP, Calvo FJ, Calixto AM, Montes FC. Comparative effectiveness and injury to tomato plants of three Neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Economic Entomology. 2018b. https://doi.org/10.1093/jee/toy057

van Lenteren JC, Bueno VHP, Burgio G, Lanzoni A, Montes FC, Silva D, et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents:a case study with Neotropical predators of Tuta absoluta on tomato. Bulletin of Entomological Research. 2019. https://doi.org/10.1017/S0007485319000130

Martínez LD, Martínez Rivero MA, Bueno VHP, Collatz J. Predation behaviour and prey preference of two neotropical mirids against two key lepidopteran pests in tomato. International Journal of Tropical Insect Science 2021. https://doi.org/10.1007/s42690-021-00605-5

Martínez MA, Duarte L, Baños HL, Rivas A, Sánchez A. Predatory mirids (Hemiptera: Heteroptera: Miridae) in tomato and tobacco in Cuba. Rev. Protección Veg. 2014;3:204-207

Furlong MJ. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Science. 2014;22:6-19. https://doi.org/10.1111/1744-7917.12157

Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution. 1998;13:350-355.

Soluk DA, Collins NC. Synergistic interactions between fish and stoneflies: Facilitation and interference among stream predators. Oikos. 1988;52:94-100.

Giustolini TA, Vendramin JD, Parra JRP. Número de instares larvais de Tuta absoluta (Meyrick) em genótipos de tomateiro. Scientiae Agricola. 2002;59:393-6.

Soluk DA. Multiple prey effects: Predicting mixed functional response of stream fish and invertebrate predators. Ecology. 1993;74:19-225.

Griffen B. Detecting emergent effects of multiple predator species. Oecologia. 2006;148:702-709. https://doi.org/10.1007/s00442-006-0414-3

Schmitz OJ. Predator diversity and trophic interactions. Ecology. 2007;88:2415-2426

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. URL https://www.R-project.org/

Urbaneja A, González-Cabrera J, Arnó J, Gabarra R. Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Management Science. 2012;68:1215-1222. https://doi.org/10.1002/ps.3344.

McCoy W, Stier C, Osenberg W. Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecology Letters. 2012;15:1449- 1456. https://doi.org/10.1111/ele.12005

Tabic A, Yonah R, Coll M. Association between omnivorous Orius bugs and their thrips prey at different spatial scales of Verbesina encelioides flowers. Israel Journal of Plant Sciences. 2010;58:131-141. https://doi.org/10.1560/IJPS.58.2.131

Belliure B, Amorós-Jiménez R, Fereres A, Marcos-García MA. Antipredator behaviour of Myzus persicae affects transmission efficiency of Broad bean wiltvirus 1. Virus Research. 2011;159:206-214.

Duarte L, Pacheco R, Quiñones M, Martínez MA, Bueno VHP. Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and Cycloneda sanguinea limbifer (Casey) (Coleoptera: Coccinelidae): Behaviour and predatory activity on Myzus persicae Zulzer (Hemiptera: Aphididae). Revi. Protección Veg. 2014;29:99-105

Olson RS, Hintze A, Dyer FC, Knoester DB, Adami C. Predator confusion is sufficient to evolve swarming behaviour. Journal of the Royal Society Interface. 2013;10:0305. https://doi.org/10.1098/rsif.2013.0305

Tylianakis JM, Rand TA, Kahmen A, Klein AM, Buchmann N, Perner J, et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biology. 2008;6(5):e122. https://doi.org/10.1371/journal.pbio.0060122.

Tylianakis JM, Romo CM. Natural enemy diversity and biological control: Making sense of the context-dependency. Basic and Applied Ecology. 2010;11:657-668. https://doi.org/10.1016/j.baae.2010.08.005.

Cusumano A, Peri E, Vinson SB, Colazza S. Intraguild interactions between two egg parasitoids exploring host patches. BioControl. 2011;56:173-184. https://doi.org/10.1007/s10526-010-9320-z.

Rondoni G, Onofri A, Ricci C. Differential susceptibility in a specialized aphidophagous ladybird, Platynaspisluteo rubra (Coleoptera: Coccinellidae), facing intraguild predation by exotic and native generalist predators. Biocontrol Science and Technology. 2012;2211:1334-1350. https://doi.org/10.1080/09583157.2012.726607

Gagnon AE, Heimpel GE, Brodeur J. The Ubiquity of Intraguild Predation among Predatory 474 Arthropods. PLoS ONE. 2011;11:e28061. 475 https://doi.org/10.1371/journal.pone.0028061

Artículos más leídos del mismo autor/a

> >>