Efecto del biocarbón enriquecido con Trichoderma asperellum Samuels, Lieckfeldt &Nirenberg sobre el desarrollo de Solanum lycopersicum (L.) y parasitismo por Meloidogyne incognita (Kofoid y White) Chitwood

Contenido principal del artículo

Danay Ynfante Martínez
Daine Hernández Ochandía
Roberto Enrique Regalado
Rolisbel Alfonso de La Cruz
Jersys Arévalo Ortega
Belkis Peteira Delgado
Mayra G. Rodríguez Hernández

Resumen

El trabajo tuvo como objetivo evaluar el efecto combinado de cinco biocarbones y Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg, sobre el desarrollo de plántulas de tomate (Solanum lycopersicum L.) y el parasitismo de Meloidogyne incognita (Kofoid y White) Chitwood, en condiciones semicontroladas. Los biocarbones se produjeron mediante la tecnología Kon-Tiki. Los sustratos se prepararon de manera independiente, conteniendo: suelo ferralítico rojo: abono orgánico (estiércol vacuno): biocarbón en proporción 2:1:1 (p/p/p). Para el ensayo se utilizaron bandejas multiceldas de 60 alvéolos, con 65 g de sustrato. Los cinco tipos de biocarbones se incularon con una suspensión de T. asperellum (cepa Ta.13) al momento de la siembra (concentración de 1x107 conidios.ml-1) a razón de 5 ml por alveolo y se incluyeron controles de cada biocarbón sin inocular; las bandejas se distribuyeron aleatoriamente. Transcurridos 30 días, se evaluó en las plantas la longitud de la parte aérea y radical, número de hojas, diámetro del tallo, masa fresca aérea y radical; además, presencia de Trichoderma en suelo y raíz. Para el estudio en condiciones semicontroladas, se trasplantaron cinco plántulas con biocarbón seleccionado+Trichoderma) y los controles correspondientes, hacia macetas de cinco kg de sustrato estéril (suelo: estiércol vacuno 1:1 p/p) inoculadas, previamente, con 500 juveniles (J2) de una población pura de M. incognita y se mantuvieron en los aisladores por 60 días. Seguidamente, se evaluaron los parámetros anteriores y el índice de agallamiento. La mezcla del biocarbón de arroz con Trichoderma, constituye un sustrato óptimo para la producción de plántulas de tomate; con efecto positivo sobre los parámetros agronómicos. Después de trasplantadas a macetas con M. incognita, en las plantas de este tratamiento se observó una disminución del índice de agallamiento provocado por el nematodo, con diferencias estadísticas respecto al testigo.

Detalles del artículo

Cómo citar
1.
Ynfante Martínez D, Hernández Ochandía D, Enrique Regalado R, Alfonso de La Cruz R, Arévalo Ortega J, Peteira Delgado B, Rodríguez Hernández MG. Efecto del biocarbón enriquecido con Trichoderma asperellum Samuels, Lieckfeldt &Nirenberg sobre el desarrollo de Solanum lycopersicum (L.) y parasitismo por Meloidogyne incognita (Kofoid y White) Chitwood. Rev. Protección Veg. [Internet]. 2 de agosto de 2024 [citado 5 de enero de 2025];38:https://cu-id.com/2247/v38e23. Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1321
Sección
ARTÍCULOS ORIGINALES

Citas

Sikora R, Coyne D, Queneherve P. Nematode parasites of bananas and plantains. In: Sikora RA, Coyne D, Hallmann J, Timper P, editors. Plant parasitic nematodes in subtropical and tropical agriculture. 3rd ed. Wallingford, UK: CABI Publishing; 2018. p. 617-657. Available from: https://hdl.handle.net/10568/103607. DOI: 10.1079/9781786391247.0617

Rodríguez Hernández MG, Fernández-Gonzálvez E, Casanueva-Medina K, Gandarilla-Bastarrechea H, González Userralde FM. Principales plagas: Fitonematodos. In: Casanova Morales AS, Hernández Salgado JC, editors. Manual Práctico para la Producción Protegida de Hortalizas en Cuba. Cuba: Instituto de Investigaciones Hortícolas "Liliana Dimitrova"-Grupo Agrícola_PNUD; 2023. p. 232-242. ISBN: 978-959-7111-71-9. Available from: https://www.undp.org/sites/g/files/zskgke326/files/2023-08/PNUD-Cuba-manual-hortalizas-protegida.pdf. Accessed: 3/11/23.

Pocurull M, Fullana AM, Ferro M, Valero P, Escudero N, Saus E, et al. Commercial formulates of Trichoderma induce systemic plant resistance to Meloidogyne incognita in tomato and the effect is additive to that of the Mi-1.2 resistance gene. Front Microbiol. 2020;10:3042. DOI: 10.3389/fmicb.2019.03042

Poveda J, Abril-Urias P, Escobar C. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi. Front Microbiol. 2020;11:992. DOI: 10.3389/fmicb.2020.00992

Schmidt HP, Rodríguez MG, Pentón G. BIOCHAR, alternativa para enmendar los suelos. 2019. Available from: https://www.researchgate.net/publication/350756270_Biochar_information_for_farmer_version_02-1. Accessed: 9/2023.

Miles TR. Introduction to the biochar world with a focus on new possible applications. In: Tagliaferro A, Rosso C, Giorcelli M, editors. Biochar. Emerging applications. Bristol, UK: IOP Publishing; 2020. ISBN 978-0-7503-2660-5 (ebook). p. 1-11.

Van Sinh N, Kato R, Linh DTT, Phuong NTK, Toyota K. Influence of Rice Husk Biochar on Soil Nematode Community under Upland and Flooded Conditions: A Microcosm Experiment. Agronomy. 2022;12:378. DOI: 10.3390/agronomy12020378

Ynfante MD, Martínez CB, Peteira DB, Reyes DY, Simpson J, Herrera EA. Caracterización morfo-cultural y variabilidad genética y molecular de aislamientos de Trichoderma. Biotecnia. Revista de Ciencias Biológicas y de la Salud. 2023;25(2):194-203. DOI: 10.18633/biotecnia.v25i2.1890

Ynfante MD, Martínez CB. Antagonismo de seis cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre Colletotrichum spp. Rev. Protección Veg. 2020;35(3):1-8.

Schmidt HP, Taylor P. Kon-Tiki flame cap pyrolysis for the democratization of biochar production. Ithaka-Journal for biochar materials, ecosystems and agriculture (IJ-bea). 2014: 338-348. Arbaz, Switzerland. ISSN 1663-0521. Available from: https://www.ithaka-journal.net/86.

Casanova-Morales AS, Hernández-Salgado JC, González Userralde FM, Hernández Morrondo M. Producción protegida de plántulas hortícolas en cepellones. In: Casanova Morales AS, Hernández Salgado JC, editors. Manual Práctico para la Producción Protegida de Hortalizas en Cuba. Cuba: Instituto de Investigaciones Hortícolas "Liliana Dimitrova"-Grupo Agrícola_PNUD; 2023. p. 45-78. ISBN: 978-959-7111-71-9. Available from: https://www.undp.org/sites/g/files/zskgke326/files/2023-08/PNUD-Cuba-manual-hortalizas-protegida.pdf. Accessed: 3/11/23.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [computer program]. Córdoba, Argentina: Universidad Nacional de Córdoba; 2017. Available from: http://www.infostat.com.ar.

Hussey RS, Barker KB. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Report. 1973;57:1025-1028.

Taylor AL, Sasser JB. Biology, identification and control of root-knot nematodes (Meloidogyne species). International Nematology Project, Department of Plant Pathology N. C. State Univ, Raleigh, United States. 1978.111 p. Available from: https://pdf.usaid.gov/pdf_docs/pnaak809.pdf.

Rodríguez MG, González E, Linares Jl, Quiñonez C, González JA, Hernández D, et al. Experiencias del uso de biocarbón enriquecido con abonos orgánicos en cooperativa urbana. Agroenergía y Economía circular/Convención AGROPAT. 2022; p. 1837-1843. Available from: https://www.researchgate.net/publication/366231267_Experiencias_del_uso_de_biocarbon_enriquecido_con_abonos_organicos_en_cooperativa_urbana/related

Xiang Y, Deng Q, Duan H, Guo Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy. 2017;9:1563-1572. DOI: 10.1111/gcbb.12449

González Marquetti I, Rodríguez MG, Peteira B, Schmidt HP. Biochar y su contribución a la nutrición, crecimiento y defensa de las plantas. Rev. Protección Veg. 2020;35(2):1-17.

González-Marquetti I, Ynfante-Martínez D, Arias-Vargas Y, Gorrita-Ramírez S, Hernández-García T, de la Noval-Pons BM, et al. Efecto de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304. Rev. Protección Veg. 2019;34(2):1-10.

Hermosa R, Rubio MB, Cardoza RE, Nicolás C, Monte E, Gutiérrez S. The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol. 2013;16(2):69-80. DOI: 10.2436/20.1501.01.181.

Muter O, Grantina-Levina L, Makarenkova G, Vecstaudza D, Strikauska S, Selga T, et al. Effect of biochar and Trichoderma application on fungal diversity and growth of Zea mays in a sandy loam soil. Environmental and Experimental Biology. 2017;15:289-296. DOI: 10.22364/eeb.15.30

Villegas MA. Trichoderma Pers. Características Generales y su potencial biológico en La Agricultura Sostenible. 2005. Available from: http://www.oriusbiotecnologia.com. Accessed: 5/06/23.

Zhao L, Zhang Y-q. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. of Integrative Agriculture. 2015;14(8):1588-1597. DOI: 10.1016/S2095-3119(14)60966-7

López-Coria M, Hernández-Mendoza J, Sánchez-Nieto S. Trichoderma asperellum induces maize seedling growth by activating the plasma membrane H+-ATPase. Molecular Plant-Microbe Interactions. 2016;29(10):797-806. DOI: 10.1094/MPMI-07-16-0138-R

Chowdappa P, Kumar SM, Lakshmi MJ, Upreti K. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control. 2013;65(1):109-117. DOI: 10.1016/j.biocontrol.2012.11.009

Ruiz-Sánchez M, Echeverría-Hernández A, Muñoz-Hernández Y, Martínez-Robaina AY, Cruz-Triana A. Aplicación de dos cepas de Trichoderma asperellum S. como estimulante de crecimiento en el cultivo del arroz. Cultivos Tropicales. 2022;43(1):e10.

Martínez B, Infante D, Reyes Y. Trichoderma spp. y su función en el control de plagas en los cultivos. Rev. Protección Veg. 2013;28(1):1-9.

Sharma AK, Sharma P, editors. Trichoderma: Host Pathogen Interactions and Applications. Rhizosphere Biology. 2020. ISBN 978-981-15-3321-1 (eBook). DOI: 10.1007/978-981-15-3321-1

Baños Y, del Busto A, Cruz R, Aguiar I, Palomino L. Efecto de enmiendas orgánicas y Trichoderma spp. en el manejo de Meloidogyne spp. Rev. Brasileña de Agroecologia. 2010;5(2):224-233. Available from: http://www.aba-agroecologia.org.br/ojs2/index.php/rbagroecologia/article/view/9863

Sharon E, Chet I, Spiege Y. Trichoderma as biological control Agent. In: Davies K, Spiegel Y, editors. Biological Control of Plant-Parasitic Nematodes: Progress in Biological Control, vol 11. Dordrecht: Springer. DOI: 10.1007/978-1-4020-9648-8_8

Mesa-Vanegas AM, Marín A, Colle-Osorno J. Metabolitos secundarios en Trichoderma y sus aplicaciones biotecnológicas agrícolas. Actual. Biol. 2019;41(111):32-44. DOI: 10.17533/udea.acbi.v41n111a02

Hernández-Ochandía D, Rodríguez MG, Peteira B, Miranda I, Arias Y, Martínez B. Efecto de cepas de Trichoderma asperellum Samuels, Lieckfeldt y Nirenberg sobre el desarrollo del tomate y Meloidogyne incognita (Kofoid Y White) Chitwood. Rev. Protección Veg. 2015;30(2):139-147.

Abdelnabby H, Hu Z, Huihui W, Zang X. Furfural Biochar based formulations show synergistic and potentiating effects against Meloidogyne incognita in tomato. J. Pest Sci. 2018;91:203-218. DOI: 10.1007/s10340-017-0872-x

Artículos más leídos del mismo autor/a

> >>