Nanopartículas de plata obtenidas a partir del extracto residual de la hidrodestilación de Thymus vulgaris L. y su efecto sobre Xanthomonas phaseoli pv. phaseoli

Contenido principal del artículo

María del Carmen Travieso
Annie Rubio
Mylene Corzo
Oriela Pino

Resumen

La síntesis de nanopartículas de plata (NPP), a partir de plantas, constituye una vía de obtención sencilla, rápida y ambientalmente segura. En el presente trabajo se evaluó el extracto acuoso residual del proceso de hidrodestilación del aceite esencial de Thymus vulgaris L., como posible fuente de agentes reductores y estabilizantes para la obtención de NPP, y se determinó la actividad antimicrobiana del producto obtenido sobre Xanthomonas phaseoli pv. phaseoli mediante el método de difusión en agar. Los resultados mostraron que el extracto evaluado fue promisorio para la síntesis verde de las NPP, las cuales se identificaron visualmente por la formación de un complejo de color marrón oscuro y, por espectrofotometría UV-VIS, por la presencia de un pico de máxima absorción a 470 nm. La actividad antimicrobiana de las NPP fue similar a la mostrada por la forma iónica de plata, y superior a las formas de cobre evaluadas como controles positivos, lo que sugiere la necesidad de profundizar en los estudios de caracterización físico-químicas y la evaluación biológica que posibiliten el aprovechamiento de este residual.

Detalles del artículo

Cómo citar
Travieso, M. del C., Rubio, A., Corzo, M., & Pino, O. (2018). Nanopartículas de plata obtenidas a partir del extracto residual de la hidrodestilación de Thymus vulgaris L. y su efecto sobre Xanthomonas phaseoli pv. phaseoli. Revista De Protección Vegetal, 33(3). Recuperado a partir de https://revistas.censa.edu.cu/index.php/RPV/article/view/989
Sección
ARTÍCULOS ORIGINALES

Citas

Corzo M, Rivero GD, Martínez ZY, Martínez B. Detección e identificación de nuevos aislados de Xanthomonas axonopodis pv. phaseoli en cultivares de frijol común. Rev. Protección Veg. 2015; 30 (2): 97-103.

Constantin EC, Cleenwerck I, Maes M, Baeyen S, Malderghem CV, De Vos P, et al. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology. 2016; 65 (5): 792-806.

Francisco FN, Gallegos MG, Ochoa FYM, Hernández CFD, Benavides MA, Castillo RF. Aspectos fundamentales del tizón común bacteriano (Xanthomonas axonopodis pv. phaseoli Smith): Características, patogenicidad y control. Rev. Mex. Fitopatol. 2013; 31 (2): 147-160.

Rajesh S, Raja DP, Rathi JM, Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestri pv malvacearum. J. Biopest. 2012; 5: 119-128.

Shende SS, Gaikwad ND, Bansod SD. Synthesis and evaluation of antimicrobial potential of copper nanoparticle against agriculturally important phytopathogens. International Journal of Biology Research. 2016; Volume 1; Issue 4: 41-47.

Vadlapudi V y Amanchy R. Synthesis, characterization and antibacterial activity of Silver Nanoparticles from Red Algae, Hypnea musciformis. Advances in Biological Research. 2017; 11 (5): 242-249. DOI: 10.5829/idosi.abr.2017.242.249

Yates M, Ramos M, Martin LMA, Zurdo V, Martinez AM. Multivalorization of apple pomace towards materials and chemicals. Waste to wealth. Journal of Cleaner Production. 2017; 143: 847e853.

Karneva KB, Vasileva IN, Denev PN, Denkova RS, Shikov VT, Manolova MN, et al. Valorization of lavender waste - obtaining and characteristics of polyphenol rich extracts. Food Science and Applied Biotechnology 2018; Vol. 1., Iss. 1.

Mercado MG, Carrillo L. Wall-Medrano A, López DJ, Álvarez EP. Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutr Hosp. 2013; 28 (1):36-46.

Hosseinzadeh S, Jafari AK, Hosseini A, Armand R. The application of Thymus vulgaris in Traditional and modern medicine: A Review. Global Journal of Pharmacology. 2015; 9 (3): 260-266.

Boruga O, Jianu C, Misca C, Golet I, Gruia AT, Horhat FG. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014; 7(3): 56-60.

Rojas MF, Corzo ML, Sánchez YP, Brito D, Montes de Oca R, Martínez Y, et al. Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subsp. carotovorum. Rev. Protección Veg. 2014; 29 (3): 197-203.

Mehrsorosh H, Gavanji S, Larki B, Mohammadi MD, Karbasiun A, Bakhtari A, et al. Essential oil composition and antimicrobial screening of some iranian herbal plants on Pectobacterium carotovorum. Global NEST Journal. 2014; 16(2): pp 240-251.

Carezzano ME, Sotelo JP, Primo E, Reinoso EB, Paletti RMF, Demo MS, et al. Inhibitory effect of Thymus vulgaris and Origanum vulgare essential oils on virulence factors of phytopathogenic Pseudomonas syringae strains. Plant Biology. 2017; 19 (4): 599-607.

Oliva M, Carezzano ME, Giuliano M, Daghero J, Zygadlo J, Bogino P, et al. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean. Plant Biology. 2015; 17 (3): 758-765.

Vancheva T, Encheva MM, Tatyozova M, Gochev V, Stoyanova M, Moncheva P, et al. Antimicrobial activity of essential oils against pepper bacterial spot agents. Annuaire de l'Université de Sofia "St. Kliment Ohridski". 2015; 100(4): 200-207.

Pino O, Sánchez Y, Rojas M, Abreu Y, Correa T, Martínez D, et al. Composición química y actividad antibacteriana del aceite esencial de Ruta chalepensis L. Rev. Protección Veg. 2014; 29(3): 220-225.

Sarkar D y Goutam P. Green Synthesis of silver nanoparticles using Mentha asiatica (Mint) extract and evaluation of their antimicrobial potential. Int. J. Curr. Res. Biosci. Plant Biol. 2017; 4(1): 77-82.

Khan MZH, Tareq FK, Hossen MA, Roki AM. Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract. Journal of Engineering Science and Technology. 2018; 13(1): 158-166.

Clinical and Laboratory Standars Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Test; Approved Standard. Ed. 12. 2015; 35(1): pp.15.

Khalilnezhad F, Torabi S, Larijany K, Khosrowshahli M. Nano silver particle synthesis using leaf extract of pharmaceutical plant Thymus vulgaris. International Journal of Biosciences. 2015; 6(4): 192-196.

Hamed SE, Al Shahwany AW. Increasing antimicrobial activity of some plant extracts against antibiotic resistant Staphylococcus aureus by using silver nanoparticles. World J Exp Biosci. 2016; 4(1): 7-14.

Chizzola R, Michitsch H, Franz C. Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J. Agric. Food Chem. 2008; 56(16): 6897-6904.

Nasrollahzadeh M, Sajadi SM, Rostami AV, Mamand SH. Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. Journal of Colloid and Interface Science. 2016; Vol. 466: 113-119.

Manukumar HM, Yashwanth B, Umesha S, Rao JV. Biocidal mechanism of green synthesized thyme loaded silver nanoparticles (GTAgNPs) against immune evading tricky methicillin- resistant Staphylococcus aureus 090 (MRSA090) at a homeostatic environment. Arabian Journal of Chemistry. 2017; Doi: 10.1016/j.arabjc.2017.09.017.

Moodley SJ, Krishna SBN, Pillay K, Sershen, Govender P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018; 9(1):9pp. https://doi.org/10.1088/2043-6254/aaabb2.

Vélez E, Campillo G, Morales G, Hincapié C, Osorio J, Arnache O. Nanoparticles obtained by aqueous or Ethanolic Aloe vera extracts: An assessment of the antibacterial activity and mercury removal capability. Journal of Nanomaterials. 2018. https://doi.org/10.1155/2018/7215210.

Turner RJ. Metal based antimicrobial strategies. Review. Microb Biotechnol. 2017; 10(5): 1062-1065.

Kedziora A, Speruda M, Krzy?zewska E, Rybka J, Lukowiak A, Bugla-Plosko G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Review. Int. J. Mol. Sci. 2018; 19: 444. Doi:10.3390/ijms19020444.

Randall CP, Gupta A, Jackson N, Busse D, O'Neill AJ. Silver resistance in Gram-negative bacteria: A dissection of endogenous and exogenous mechanisms. J. Antimicrob. Chemother. 2015; 70: 1037-1046.

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia JR, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005; 16: 2346-2353

Ronavari A, Kovacs D, Igaz N, Vagvolgyi C, Miklos I, Boros IM, et al. Biological activity of green synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Internatioanl Journal of Nanomedicine 2017; 12: 871- 883.

Tippayawat P, Phromviyo N, Bouero P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J. 2016; 4:e2589. DOI 10.7717/peerj.2589.

Artículos más leídos del mismo autor/a

> >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.