Antimicrobial susceptibility pattern in strains of contaminating mycoplasmas in cell cultures

Main Article Content

Evelyn Lobo-Rivero
Anisleidy Pérez Castillo
Ania Ramón-Martínez
Michel Báez Arias
Ivette Espinosa-Castaño

Abstract

Antibiotics are used in the control of mycoplasma contaminations in cell cultures. The antimicrobial resistance of these microorganisms has increased considerably in recent years and the antibiotics of choice, such as quinolones, aminoglycosides and tetracyclines, have become less effective. The aim of this work was to determine the susceptibility patterns in strains of mycoplasma contaminants in cell cultures. Eleven mycoplasma strains, derived from the diagnosis of contamination in cell cultures and previously characterized by biochemical and genetic tests, were used for this purpose. It was determined the Minimum Inhibitory Concentration (MIC) of strains against nine antimicrobial agents used in the routine work with cell cultures and against contaminating mycoplasma species. Isolates showed susceptibility to tetracyclines: minocycline (MIC range: 0.25-0.5 μg/mL) and oxytetracycline (MIC range: 1-2 μg/mL), and to macrolide: tylosine (MIC range: 0.25-1 μg/mL); while they showed moderate resistance to quinolones: enrofloxacin (MIC range: 4-8 μg/mL) and ciprofloxacin (MIC range: 4-8 μg/mL). A total of 10/11 strains showed resistance to aminoglycosides: neomycin (MIC range: 8-16 μg/mL), gentamicin (MIC range: 8-32 μg/mL), kanamycin (MIC range: 8-32 μg/mL), and streptomycin (MIC range: >64 μg/mL). The antimicrobial resistance of mycoplasmas should be continuously monitored with a view to minimizing changes in susceptibility and maintaining antimicrobial efficacy against contamination.

Article Details

How to Cite
1.
Lobo-Rivero E, Pérez Castillo A, Ramón-Martínez A, Báez Arias M, Espinosa-Castaño I. Antimicrobial susceptibility pattern in strains of contaminating mycoplasmas in cell cultures. Rev. Salud Anim. [Internet]. 2020 Apr. 1 [cited 2024 Nov. 24];42(1). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/1066
Section
ARTÍCULOS ORIGINALES

References

Fader CM, Medero A, Furlán M, Colombo MI, editors. Observación de Mycoplasma spp. por microscopía electrónica, tratamiento, eliminación y confirmación por PCR anidada. 10th Inter-American Congress on Electron Microscopy (CIASEM 2009). 2009.

Razin S, Yogev D, Naot Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev. 1998;62(4):1094-1156.

Rivera-Tapia JA, Cedillo-Ramírez ML, Vega-Benítez M. Micoplasmas y su importancia médica. Rev Biomed. 2001;12(4):262-271.

Fagundo-Sierra R, Sánchez-Saínz A, Pérez-Jáuregui J. Resistencia in vitro de aislamientos clínicos de Mycoplasma hominis y Ureaplasma urealyticum en México. Bioquímica. 2006;31(4):124-131.

Waites KB, Katz B, Schelonka RL. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005;18(4):757-789.

Hilliard NJ, Duffy LB, Crabb DM, Waites KB. In vitro comparison of agar and microbroth dilution methods for determination of MICs for Mycoplasma hominis. J Microbiol Meth. 2005;60:285-288.

Hirose K, Kawasaki Y, Kotani K, Abiko K, Sato H. Characterization of a point mutation in the parC gene of Mycoplasma bovirhinis associated with fluoroquinolone resistance. Journal of veterinary medicine B. InfectDis Vet Pub Health. 2004;51(4):169-175.

Taroco R, Seija V, Vignoli R. Métodos de estudio de la sensibilidad antibiótica. Temas de Bacteriología y Virología médica. Mexico. 2006. p. 663-671.

Hannan PC. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet Res. 2000;31(4):373-395.

Ross JE, Scangarella-Oman NE, Flamm RK, Jones RN. Determination of disk diffusion and MIC quality control guidelines for GSK2140944, a novel bacterial type II topoisomerase inhibitor antimicrobial agent. Journal of clinical microbiology. 2014;52(7):2629-2632.

Sader HS, Pignatari AC. E test: a novel technique for antimicrobial susceptibility testing. Sao Paulo Med J. 1994;112(4):635-638.

Medvedeva ES, Baranova NB, Mouzykantov AA, Grigorieva TY, Davydova MN, Trushin MV, et al. Adaptation of Mycoplasmas to Antimicrobial Agents: Acholeplasma laidlawii Extracellular Vesicles Mediate the Export of Ciprofloxacin and a Mutant Gene Related to the Antibiotic Target. The Scientific World Journal. 2014:1-7.

Pérez A. Detección y caracterización de contaminaciones por micoplasmas en cultivos celulares y productos biotecnológicos. (Tesis en Opción al Grado de Master en Microbiología, Mención Bacteriología-parasitología(. Centro Nacional de Sanidad Agropecuaria. 2017.

Clinical and Laboratory Standards Institute (CLSI). Analysis and Presentation of Cumulative Antimicrobial Susceptibility TestData; Approved Guideline. Fourth Edition.CLSI document M39-A4. CLSI, Wayne,Pennsylvania, USA, 2016.

Tully JG, Razin S. Methods in Mycoplasmology. 2 ed. New York and London: Academic Press. 1983.

CVMP. Guidelines for environmental impact assessment for veterinarymedicinal products. EMEA/CVMP/ERA/4182/2005-corr. EMEA, London.2007.

Van Bambeke F, Michot JM, Van Eldere J, Tulkens PM. Quinolones in 2005: an update. Clin Microbiol Infect. 2005;11(4):256-280.

Duque A, Peréz A, Espinosa I, Lobo E. Resistencia antimicrobiana de aislados cubanos de Mycoplasma gallisepticum. Rev Salud Anim. 2017;39(1):28-34.

Antunes NT. Mecanismos de resistencia a las quinolonas en Mycoplasma mycoides subsp. mycoides LC. España: Universidad de Las Palmas de Gran Canaria. 2007.

Prasad E, Lim-Fong R. Mycoplasma detection and elimination. Abstract Book of 14th International Congress of the International Organization of Mycoplasmology (IOM). 2002; Viena, Austria.

Ogawa M, Uchiyama T, Satoh M, Ando S. Decontamination of mycoplasma-contaminated Orientia tsutsugamushi strains by repeating passages through cell cultures with antibiotics. BMC Mmicrobiol. 2013;13:32.

Hannan PC. Antibiotic susceptibility of Mycoplasma fermentans strains from various sources and the development of resistance to aminoglycosides in vitro. J Med Microbiol. 1995;42(6):421-428.

Meng DY, Sun CJ, Yu JB, Ma J, Xue WC. Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates. Braz J Microbiol. 2014;45(1):239-242.

Raherison S, Gonzalez P, Renaudin H, Charron A, Bébéar C, Bébéar CM. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob Agents Chemother. 2002;46(3):672-679.

Perlman D, Rahman SB, Semar JB. Antibiotic control of Mycoplasma in tissue culture. Appl Microbiol. 1967;15(1):82-85.

Jin LY, Hyoung-Joon M, Bo-Kyu K, Man KJ, Wan-Kyu L. In vitro antimicrobial susceptibility of Mycoplasma hyorhinis field isolates collected from swine lung specimens in Korea. J Swine Health Prod. 2014;22(4):193-196.

Gautier-Bouchardon AV. Antimicrobial Resistance in Mycoplasma spp., Microbiol Spectrum 6(4):ARBA-0030-2018. doi:10.1128/microbiolspec.ARBA-0030-2018.

Cord C. Uphoff, Sabine-A. Denkmann, Hans G. DrexlerTreatment of Mycoplasma Contamination in Cell Cultures with PlasmocinJournal of Biomedicine and Biotechnology 2012, 8 pages doi:10.1155/2012/26767.

Soehnlen MK, Kunze ME, Karunathilake KE, Henwood BM, Kariyawasam S, Wolfgang DR, et al. In vitro antimicrobial inhibition of Mycoplasma bovis isolates submitted to the Pennsylvania Animal Diagnostic Laboratory using flow cytometry and a broth microdilution method. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2011;23(3):547-551.

Wu CC, Shryock TR, Lin TL, Faderan M, Veenhuizen MF. Antimicrobial susceptibility of Mycoplasma hyorhinis. Vet Microbiol. 2000;76(1):25-30.

Most read articles by the same author(s)

> >>