New trends in the diagnosis of animal viral diseases

Main Article Content

Carmen Laura Perera
Ana María Acevedo

Abstract

The diagnosis and control of economically important viral diseases have progressed significantly in the last decade due to the application of polymerase chain reaction (PCR) technologies, as well as various applications thereof such as the PCR reaction based on the fluorescence detection in real time (rPCR), the loop-mediated isothermal amplification (LAMP) and the sequencing techniques based on nucleic acids. These approaches allow the amplification, simultaneous quantification and sequence analysis of nucleic acids, combining high speed with sensitivity and specificity, the benefits related to the conventional or endpoint PCR assays, a high dynamic range, a reduced cross contamination, the ability to be scaled, and the precise quantification of the target, allowing the determination of the viral load.

Article Details

How to Cite
1.
Perera CL, Acevedo AM. New trends in the diagnosis of animal viral diseases. Rev. Salud Anim. [Internet]. 2018 Dec. 1 [cited 2024 Nov. 22];40(3). Available from: https://revistas.censa.edu.cu/index.php/RSA/article/view/990
Section
ARTÍCULO RESEÑA

References

-Herrero U. Capítulo 6. Estrategias generales para el diagnóstico en virología. En: Procedimientos en Virología Médica. 1. Ed. San José. C.R. Editorial de la Universidad de Costa Rica. 2004. Pp. 80-93.

-Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350-4.

-Hoffmann B, Beer M, Reid SM, Mertens P, Oura CA, van Rijn PA, et al. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol. 2009; 39:1-23.

-Belák S. Molecular diagnosis of viral diseases, present trends and future aspects A view from the OIE Collaborating Centre for the Application of Polymerase Chain Reaction Methods for Diagnosis of Viral Diseases in Veterinary Medicine. Vaccine. 2007;25:5444-5452.

-Skerra A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. 1992;20:3551-3554.

-Wagar EA. Direct hybridization and amplification applications for the diagnosis of infectious diseases. J Clin Lab Anal.1996;10:312-325.

-Mittermeier RA. Conservation International and biodiversity conservation. Nature. 2000;405:255.

-Qian K. Detection of HCV RNA in serum by reverse transcription polymerase chain reaction (RT-PCR). Methods Mol Med. 1999;19:47-53.

-Dynon K, Varrasso A, Ficorilli N. Identification of equine herpesvirus 3 (equine coital exanthema virus), equine gammaherpesviruses 2 and 5, equine adenoviruses 1 and 2, equine arteritis virus and equine rhinitis A virus by polymerase chain reaction. Aust Vet J. 2001;79:695-702.

-Erlich HA, Gelfand D, Sninsky JJ. Recent advances in the polymerase chain reaction. Science. 1991;252:1643-1651.

-Zhang L, Pan Z, Geng S. Sensitive, semi-nested RT-PCR amplification of fusion gene sequences for the rapid detection and differentiation of Newcastle disease virus. Res Vet Sci. 2010;89:282-289.

-Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev. 2000;13:559-570.

-Chamberlain JS, Gibbs RA, Ranier JE. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988;16:11141-11156.

-Mishra B, Sharma M, Pujhari SK. Clinical applicability of single-tube multiplex reverse-transcriptase PCR in dengue virus diagnosis and serotyping. J Clin Lab Anal. 2011;25:76-78.

-Mihaly I, Kolozsi T, Liptai Z. Experience with multiplex nested PCR and fluorescent antibody tests in the diagnosis of acute central nervous system infections with herpes simplex virus type 1 and 2. Orv Hetil. 2010;151:1896-1903.

-Beck ET, Henrickson KJ. Molecular diagnosis of respiratory viruses. Future Microbiol. 2010;5:901-916.

-Valasek MA, Repa JJ. The power of real-time PCR. Advances in Physiology Education. 2005;29: 151-159.

- Zipper H, Brunner H, Bernhagen J, Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR green I, its structure determination and methodological implications. Nucleic Acids Res. 2004;32:103.

- Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4:357-362.

-Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303-308.

-Acevedo AM, Perera CL, Vega A, Ríos L, Coronado L, Relova D, et al. A duplex SYBR Green I-based real-time RT-PCR assay for the simultaneous detection and differentiation of Massachusetts and non-Massachusetts serotypes of infectious bronchitis virus. Mol Cell Probes. 2013;27(5-6):184-92.

-Tam S, Clavijo A, Engelhard EK, Stanley T, Alfonso C, Eric KE, et al. Fluorescence-based multiplex real-time RT-PCR arrays for the detection and serotype determination of foot-and-mouth disease virus. J Virol Methods. 2009;161:183-191.

-Huang YL, Pang VF, Pan CH, Chen TH, Jong MH, Huang TS, et al. Development of a reverse transcription multiplex real-time PCR for the detection and genotyping of classical swine fever virus. J Virol Methods. 2009;160:111-118.

-Haines FJ, Hofmann MA, King DP, Drew TW, Crooke HR Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses. PLoS ONE. 2013;8(7): e71019. doi:10.1371/journal.pone.0071019.

-Hymas WC, Mills A, Ferguson S. Development of a multiplex real-time RTPCR assay for detection of influenza A, influenza B, RSV and typing of the 2009-H1N1 influenza virus. J Virol Methods. 2010;167:113-118.

-Shisong F, Jianxiong L, Xiaowen C. Simultaneous detection of influenza virus type B and influenza A virus subtypes H1N1, H3N2, and H5N1 using multiplex real-time RT-PCR. Appl Microbiol Biotechnol. 2011;90:1463-1470.

-Chen Y, Cui D, Zheng S. Simultaneous detection of influenza A, influenza B, and respiratory syncytial viruses and subtyping of influenza A H3N2 virus and H1N1 (2009) virus by multiplex real-time PCR. J Clin Microbiol. 2011;49:1653-1656.

-Beck ET, Jurgens LA, Kehl SC. Development of a rapid automated influenza A, influenza B, and respiratory syncytial virus A/B multiplex real-time RTPCR assay and its use during the 2009 H1N1 swine-origin influenza virus epidemic in Milwaukee, Wisconsin. J Mol Diagn. 2010;12:74-81.

-Pérez LJ, Perera CL, Frías MT, Núñez JI, Ganges L, Díaz de Arce H. A multiple SYBR Green I-based real-time PCR system for the simultaneous detection of porcine circovirus type 2, porcine parvovirus, pseudorabies virus and Torque teno sus virus 1 and 2 in pigs. J Virol Methods. 2012;179:233-241.

-Rodríguez-Tarduchy G. ¿Hablamos de gen o más? 2007. http://www.editorialhelice.es/serie-tangente/hablamos-de-gen-o-mas.html

- Genome News Network. 2004. (http://www.genomenewsnetwork.org

-Venter JC. The sequence of the human genome. Science. 2001;291(5507):1304-1351.

- Metzker ML. Sequencing technologies the next generation. Nature Reviews Genetics. 2010;11:31-46.

- Deyde VM, Nguyen T, Bright RA, Balish A, Shu B, Lindstrom S, et al. Detection of molecular markers of antiviral resistance in influenza A (H5N1) viruses using a pyrosequencing method. Antimicrob Agents Chemother. 2009;53(3):1039-1047.

- Bishop-Lilly A. Arbovirus Detection in Insect Vectors by Rapid, High- Throughput Pyrosequencing. PLoS Negl Trop Dis. 2010;4(11):878.

- Lin BC, Malanoski AP, Wang Z, Blaney KM, Long NC, Meador CE, et al. Universal detection and identification of avian influenza virus by use of resequencing microarrays. J Clin Microbiol. 2009;47(4):988-993.

- Huang Y, Duffy S, Hong Y, Norman S, Ghosh M, He J, et al. Multiplex assay for simultaneously typing and subtyping influenza viruses by use of an electronic microarray. J Clin Microbiol. 2009;47(2):390-396.

- Njiru ZK, Mikosza AS, Armstrong T, Enyaru JC, Ndung'u JM, Thompson AR. Loop-Mediated Isothermal Amplification (LAMP) Method for Rapid Detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis. 2008;2(2):e147. doi:10.1371/journal.pntd.0000147.

- Ito M. Rapid detection and typing of influenza A and B by loop-mediated isothermal amplification: comparison with immunochromatography and virus isolation. J Virol Methods. 2006;135(2):272-275.

Most read articles by the same author(s)

> >>