Resistencia antimicrobiana en bacterias de origen animal: desafíos para su contención desde el laboratorio

Contenido principal del artículo

Ivette Espinosa Castaño
Michel Báez Arias
Rosa Elena Hernández Fillor
Yanet López Dorta
Evelyn Lobo Rivero
Belkis Corona-González

Resumen

La resistencia antimicrobiana (RAM) constituye una crisis global con impacto en la salud humana y animal. El consumo de antibióticos en la crianza animal, también propicia la selección y propagación de cepas y sus determinantes de resistencia al ambiente y en la cadena de producción de alimentos. Una de las iniciativas estratégicas para la contención de la RAM, es asegurar el uso apropiado de los antibióticos disponibles, en lo cual, los laboratorios de microbiología tienen un importante papel, a través del diagnóstico y las pruebas de susceptibilidad antimicrobiana. La presente revisión tiene como objetivo proporcionar información sobre las pautas, dificultades y los desafíos en la interpretación de datos derivados de las pruebas de laboratorio para la identificación de bacterias, su tipificación y la estimación del perfil de susceptibilidad a los antibióticos. También se describen enfoques para la distinción entre bacterias patógenas, comensales e indicadoras a considerar en los planes de vigilancia y monitoreo de la RAM. En la crianza de los animales suelen aparecer cepas zoonóticas o indicadoras de multirresistencia, que son prioridad en programas de vigilancia, bajo el concepto Una Salud, por presentar resistencia adquirida con ventaja para su diseminación. Ejemplos alarmantes en los últimos años son Escherichia coli productora de betalactamasas de espectro extendido (E. coli BLEE) y Staphylococcus aureus resistente a meticilina (SARM). Además, se diserta sobre las expresiones transitorias de resistencia microbiana, las biopelículas y células persistentes, que explican las recidivas de infecciones y aún son poco consideradas en la medicina veterinaria. Finalmente, se enfatiza en la necesidad de estrategias para armonizar y divulgar datos que soporten guías para el tratamiento de infecciones bacterianas de interés veterinario.

Detalles del artículo

Cómo citar
1.
Espinosa Castaño I, Báez Arias M, Hernández Fillor RE, López Dorta Y, Lobo Rivero E, Corona-González B. Resistencia antimicrobiana en bacterias de origen animal: desafíos para su contención desde el laboratorio. Rev. Salud Anim. [Internet]. 1 de diciembre de 2019 [citado 25 de noviembre de 2024];41(3). Disponible en: https://revistas.censa.edu.cu/index.php/RSA/article/view/1046
Sección
ARTÍCULOS RESEÑA

Citas

Clatworthy AE, Pierson E, Hung DT. Targeting virulence: A new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3:541-548.

Smith RP, Paxman JJ, Martin J. Scanlon and Begoña Heras. Targeting bacterial Dsb proteins for the development of anti-virulence. Agents Molecules. 2016;21:811.

WHO. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization: Geneva, Switzerland, 2014.

Cavaco LM, Frimodt-Moller N, Hasman H, Guardabassi L, Nielsen L, Aarestrup FM. Prevalence of quinolone resistance mechanisms and associations of minimum inhibitory concentration in quinolone-resistant Escherichia coli isolated in humans and swine in Denmark. Microb Grud Resist. 2008;14:163-169.

Aryee A, Price N. Antimicrobial stewardship-can we afford to do without it? Br J Clin Pharmacol. 2014;79(2):173-181.

Acar JF, Moulin G. Antimicrobial resistance at farm level. Rev Sci Tech Off Int Epiz. 2006;25(2):775-792.

Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA. 2015;112(18):5649-5654. http://dx.doi.org/10.1073/.

Aenishaenslin C, Häsler B, Ravel A, Parmley J, Stärkd K, Buckeridgee D. Evidence needed for antimicrobial resistance surveillance systems. Bull World Health Organ. 2019;97:283-289. http://dx.doi.org/10.2471/BLT.18.218917.

Patricia LK, David MP. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance Antibiotics. 2013;2:191-205. doi:10.3390/antibiotics2020191.

Verraes C, Van BS, Van ME, Van CE, Butaye P, Catry B, et al. Antimicrobial Resistance in the Food Chain: A Review. Int J Environ Res Public Health, 2013;10:2643-2669. Doi: 10.3390/ijerph10072643.

Alex VB, Géraldine D, Michel P, Sonia Ch, Gilles Z, Jacques S, et al. Rapid Clinical Bacteriology and Its Future Impact. Ann Lab Med. 2013;33:14-27. http://dx.doi.org/10.3343/alm.2013.33.1.14

Fernández A, García C, Saéz JA, Valdezate S. Métodos de identificación bacteriana en el laboratorio de Microbiología. Procedimientos en Microbiología Clínica Recomendaciones de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica Editores: Emilia Cercenado y Rafael Cantón. SEIMC. 2010.

Anholt RM, Klima C, Allan N, Matheson-Bird H, Schatz C, Ajitkumar P, et al. Antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex in Alberta, Canada. Front Vet Sci. 2017;4:207. Doi: 10.3389/fvets.2017.00207.

Yoon-Hee O, Dong-Chan M, Young JL, Bang-Hun H, Suk-Kyung L. Genetic and phenotypic characterization of tetracycline-resistant Pasteurella multocida isolated from pigs. Vet Microbiol. 2019;233:159-163.

Germolec DR, Frawley RP, Evans E. Markers of inflammation. Methods Mol Biol. 2010;598:53-73.

Kapasi AJ, Dittrich S, González IJ, Rodwell TC. Host Biomarkers for distinguishing bacterial from non-bacterial causes of acute febrile illness: A Comprehensive Review. PLoS ONE 2016;11(8): e0160278. doi: 10.1371/journal.pone.016027.

Downes KJ, Weiss SL, Gerber JS, Klieger SB, Fitzgerald JC, Balamuth F, et al. A Pragmatic Biomarker-Driven Algorithm to Guide Antibiotic Use in the Pediatric Intensive Care Unit: The Optimizing Antibiotic Strategies in Sepsis (OASIS) Study. J Pediatric Infect Dis Soc. 2017;1;6(2):134-141. doi: 10.1093/jpids/piw023.

Pomorska-Mól M, Markowska-Daniel I, Kwit K, Stepniewska K Pejsak Z. C-reactive protein, haptoglobin, serum amyloid A and pig major acute phase protein response in pigs simultaneously infected with H1N1 swine influenza virus and Pasteurella multocida. BMC Veterinary Research. 2013;9:14. http://www.biomedcentral.com/1746-6148/9/14

Lappin MR, Blondeau J, Boothe D, Breitschwerdt EB, Guardabassi L, Lloyd DH, et al. Antimicrobial use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med. 2017;31:279-294.

Law JW, AbMutalib N, Chan K, Lee L. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantagesand limitations. Front Microbiol. 2015;5:770. doi: 10.3389/fmicb.2014.00770.

Lane AB, Dore MM. Leptospirosis: A clinical review of evidence based diagnosis, treatment and prevention. World J Clin Infect Dis. 2016;6(4):1-66. doi: 10.5495/wjcid.v6.i4.61

Glatman F. Advances in antibody mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy. Immunol Med Microbiol. 2003;39:9-16.

Seco-Mediavilla P, Verger JM, Grayon M, Cloeckaert A, Marin CM, Zygmunt MS, et al. Epitope mapping of the Brucella melitensis BP26 immunogenic protein: usefulness for diagnosis of sheep brucellosis. Clin Diagn Lab Immunol. 2003; 10(4): 647-51.

Shtrek SV, Rudakov NV, Abramova NV, Samoylenko IE, Berezkina GV, Zelikman SY, et al. Evaluation of the effectiveness of the serological methods for the identification of antibodies in patients with tissue ricketsiosis on the territories of a different risk of Rickettsia sibirica infection. Klin Lab Diagn. 2018;63(12):777-782.

Cai HY, Caswell JL, Prescott JF. Nonculture Molecular Techniques for Diagnosis of Bacterial Disease in Animals: A Diagnostic Laboratory Perspective Vet Pathol. 2014;51(2):341-350.

Ranjbar R, Karami A, Farshad S, Giammanco GM, Mammina C. Typing methods used in the molecular epidemiology of microbial pathogens: a how-to guide. New Microbiol. 2014;37:1-15.

Hofmann MA, Brian DA. Sequencing PCR DNA amplified directly from a bacterial colony. Biotechniques. 1991;1:30-31.

Espinosa I, Báez M, Percedo MI, Martínez S. Evaluation of simplified DNA extraction methods for Streptococcus suis typing. Rev Salud Anim. 2013;35(1):59-63.

Davis KM, Isberg RR. One for All, but Not All for One: Social Behavior during Bacterial Diseases Trends Microbiol. 2018;27(1):64-74. doi: 10.1016/j.tim.2018.09.001

van Belkum A, Durand G, Peyret M, Chatellier S, Zambardi G, Schrenzel J, Shortridge D, Engelhardt A, Dunne WM Jr.. Rapid Clinical Bacteriology and Its Future Impact. Ann Lab Med. 2013; 33:14-27. doi:10.3343/alm.2013.33.1.14

Anjum MF, Zankari E, Hasman H. 2017. Molecular methods for detection of antimicrobial resistance. Microbiol Spectrum. 2017; 5(6): ARBA-0011. doi:10.1128/microbiolspec.ARBA-0011-2017.

Edward JF, Mark C E. Analyses of clonality and the evolution of bacterial pathogens. Current Opinion in Microbiology. 2004;7:308-313.

Tagini1 F, Greub G. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur J Clin Microbiol Infect Dis. 2017;36:2007-2020. doi: 10.1007/s10096-017-3024-6.

Opriessnig T, Giménez-Lirola L, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev. 2011;12(2):133-148.

Seitz M, Valentin-Weigand P, Willenborg J. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicineas Exemplified by the Swine Pathogen Streptococcus suis. Curr Top Microbiol Immunol. 2016;398:103-121. doi: 10.1007/82_2016_506.

Barbé B, Yansouni CP, Affolabi D, Jacobs J. Implementation of quality management for clinical bacteriology in low-resource settings Clin Microbiol Infect. 2017;23(7):426-433. doi: 10.1016/j.cmi.2017.05.007.

Ombelet S, Ronat JB, Walsh T, Yansouni CP, Cox J, Vlieghe E, et al. Clinical bacteriology in low-resource settings: today's solutions. Lancet Infect Dis. 2018; 18(8):e248-e258. doi: 10.1016/S1473-3099(18)30093-8.

Acar, J, Röstel B. Antimicrobial resistance: An overview. Rev Sci Tech OIE. 2001;20:797-810.

Wright GD. The antibiotic resistome. ExpertOpin. Drug Discov.2010;5:779-788.

Olivares J, Bernardini A, Garcia-Leon G, Corona F, Sanchez MB, Martinez JL. Intrinsic antibiotic resistance. Front Microbiol. 2013;4:103. doi: 10.3389/fmicb.2013.00103

Avendaño MC. La resistencia antimicrobiana. Algunos aspectos de un grave problema. An Real Acad Farm.2017;83 (4):380-391.

Verraes C, Van Boxstael S, Van Meervenne E, Van Coillie E, Butaye P, Catry B, et al. Antimicrobial Resistance in the Food Chain: A Review. Int J Environ Res Public Health. 2013;10:2643-2669. doi:10.3390/ijerph10072643

Nakaminami H, Noguchi N, Nishijma S, Kurokawa I, So H, Sasatsu M. Transduction of the plasmid encoding antiseptic resistance gene qacBin Staphylococcus aureus. Biol Pharm. Bull. 2007;30:1412-1415.

Kelly BG, Verspermann, A, Bolton DJ. Horizonal gene transfer of virulence determinants in selected bacterial foodborne pathogens. Food Chem Toxicol. 2008;47:969-977.

Bush K. Past and present perspectives on ß-lactamases. Antimicrob Agents Chemother. 2018;62:01076-18. doi:10.1128/AAC.01076-18.

Robert A. Bonomob-Lactamases: A Focus on Current Challenges. Cold Spring Harb Perspect Med 2017;7:a025239.

Yanat B, Rodríguez-Martínez JM, Touati A. Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries. Eur J Clin Microbiol Infect Dis 2017;36:421-435.

Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66:551-559.

Rhouma M, Beaudry F, Thériault Wand Letellier A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front Microbiol. 2016;7:1789.

Nguyen NT, Nguyen HM, Nguyen CV, Nguyen TV, Nguyen MT, Thai HQ, et al. Use of colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in commensal Escherichia coli bacteria. Appl Environ Microbiol. 2016;82:3727-3735. doi: 10.1128/AEM.00337-16.

Zhou G, Shi QS, Huang XM, Xie XB. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int J Mol Sci. 2015; 6:21711-21733. doi: 10.3390/ijms160921711

Fernando C, Martinez JL. Phenotypic Resistance to Antibiotics. Antibiotics. 2013;2:237-255. doi: 10.3390/antibiotics2020237

Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. Version 2. F1000Res. 2015; 4: 179. doi 10.12688/f1000research.6709.2

Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens. 2013;2:288-356. doi:10.3390/pathogens2020288.

Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics Drug Resistance Updates. 2018;38:12-26.

Calvo J, Cantón R, Fernández F, Mirelis B, Navarro F. Procedimientos en Microbiología Clínica [Internet]. 2011. 38. Detección fenotípica de mecanismos de resistencia en gramnegativos ISBN-978-84-615-1530-1SEIMC.

Matuschek E, Brown DF, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20:O255-266. doi: 10.1111/1469-0691.12373.

CLSI. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline-Third Edition. CLSI document M39-A4. Wayne, PA: Clinical and Laboratory Standards Institute. 2009.

Silley P. Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Rev Sci Tech Off Int Epiz. 2012;31(1):33-41.

Cusack TP, Ashley EA, Ling CL, Rattanavong S, Roberts T, Turner P, Wangrangsimakul T. D.A.B. Dance . Impact of CLSI and EUCAST breakpoint discrepancies on reporting ofantimicrobial susceptibility and AMR surveillance. Clin Microbiol Infect. 2019;25:910e911.

OIE methodology and template for the OIE database on sales of veterinary antimicrobial agents. Paris: World Organization for Animal Health; 2015 Disponible en: http://www.oie.int/fileadminHome/eng/Internationa_Standard_Set ting/docs/pdf/SCAD/A_SCAD_Sept2015.pdf , accessed 31 January 2017).

Lei Z, Liu Q, Yang S, Yang B, Khaliq H, Li K, et al. PK-PD Integration Modeling and Cutoff Value of Florfenicol against Streptococcus suis in Pigs. Front Pharmacol. 2018;9:2. doi: 10.3389/fphar.2018.00002.

De Briyne N, Atkinson J, Pokludova L, Borriello SP, Price S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet Record. 2013;173:475.

Norris JM, Zhuo A, Govendir M, Rowbotham SJ, Labbate M, Degeling C, et al. Factors influencing the behaviour and perceptions of Australian veterinarians towards antibiotic use and antimicrobial resistance. PLoS ONE. 2019;14(10): e0223534.

Kohlmann R, Gatermann SG. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data - The Influence of Different Parameters in a Routine Clinical Microbiology Laboratory. PLoS ONE. 2016; 11(1): e0147965. doi: 10.1371/journal.pone.0147965.

Clinical and Laboratory Standards Institute (CLSI). Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data; Approved Guideline. Fourth Edition. CLSI document M39-A4. CLSI, Wayne, Pennsylvania, USA, 2014

Software de la OMS, WHONET 5. Se descarga libre tras rellenar la debida ficha de registro (http://www.who.int/drugresistance/whonetsoftware/en/).

Mòdol Deltell JM, Álvarez MM, Méndez HM, Giménez PM. Antibiotics policy: The arrival of antimicrobial stewardship programmes. Med Clin (Barc). 2018;150 (11):443-449.

Merle E, Olson HC, Douglas WM, Buret AG, Ronald R. Read biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet. 2012;66:86-92.

Joo HS, Otto M. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem Biol. 2012;19(12):1503-1513.

Doring G, Flume P, Heijerman H, Elborn JS. Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros. 2012; 11(6):461-467.

Espinosa I, Báez M, Lobo E, Martínez S, Gottschalk M. Antimicrobial Activity of Penicillin G and N-acetylcystein on Planktonicand Sessile Cells of Streptococcus suis. Polish J Microbiol. 2016;65(1):105-109.

Kraemer JG, Pires J, Kueffer M, Semaani E, Endimiani A, Hilty M, et al. Prevalence of extended-spectrum ß-lactamase-producing Enterobacteriaceae and Methicillin-Resistant Staphylococcus aureus in pig farms in Switzerland. Sci Total Environ. 2017;15;603-604:401-405. doi: 10.1016/j.scitotenv.2017.06.110.

Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-genee based approaches. Clin Microbiol Infect. 2018;24(4):350-354. doi: 10.1016/j.cmi.2017.12.016.

Moran-Gilad J. Whole genome sequencing (WGS) for food-borne pathogen surveillance and control - taking the pulse. Euro Surveill. 2017;22:23.

Anholt RM, Klima C, Allan N, Matheson-Bird H, Schatz C, Ajitkumar P, Otto SJG, Peters D, Schmid K, Olson M, McAllister T, Ralston B. Antimicrobial Susceptibility of Bacteria That Cause Bovine Respiratory Disease Complex in Alberta, Canada. Front Vet Sci. 2018;4:207.

Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Anim Health Res Rev.2011; 2(2):133-148.

Bingzhou Zhang, Xugang Ku, Xuexiang Yu, Qi sun, Hao Wu, Fangzhou Chen, Xiaoqian Zhang, Long Guo, Xibiao tang & Qigai He. Prevalence and antimicrobial susceptibilities of bacterial pathogens in Chinese pig farms from 2013 to 2017. Scientific Reports. 2019; 9:9908.

Nhung NT, Chansiripornchai N and Carrique-Mas JJ. Antimicrobial Resistance in Bacterial Poultry Pathogens: A Review. Front. Vet. Sci. 2017; 4:126.

López-Pueyo MJ, Barcenilla-Gaite F., R. Amaya-Villar y J. Garnacho-Montero. Puesta al día en medicina intensiva: el enfermo crítico con infección grave. Multirresistencia antibiótica en unidades de críticos. Med Intensiva. 2011;35(1):41-53.

Espinosa Ivette, M. Báez, J. Vichi, Siomara Martínez Antimicrobial Resistance and genes associated to the host-microbe interaction of Pasteurella multocida isolates from swine in Western Cuba. Rev. Salud Anim. 2012; 34 (3): 151-158

M. Báez, Ivette Espinosa, J. Vichi, Siomara Martínez Estudio de la sensibilidad in vitro frente a diferentes antimicrobianos en cepas de S. suis asociados a neumonía porcina Rev Salud Anim. 2012; 34(1): 57-62.

Duque-Ortiz A, Anisleidy Pérez-Castillo, Evelyn Lobo-Rivero Resistencia antimicrobiana de aislados cubanos de Mycoplasma gallisepticum Rev Salud Anim. 2017;39(1).

Cano EM, Domínguez AM, Ezpeleta BC, Martínez ML, Padilla OB. Ramírez de Arellano E. Cultivos de vigilancia epidemiológica de bacterias resistentes a los antimicrobianos de interés nosocomial. Recomendaciones de la Sociedad Española de Procedimientos en Microbiología Clínica. 2007; (SEIMC). ISBN-978-84-611-9636-4.

Treviño M, Martínez-Lamas L, Romero-Jung P, Varón C, Moldes L, et al. Comparación entre las pruebas para la detección de betalactamasas de espectro extendido de los sistemas Vitek2 y Phoenix. Enferm Infecc Microbiol Clin. 2009. 27(10):566-570.

Poirel L, Madec J-Y, Lupo A, Schink A-K, Kieffer N, Nordmann P, and Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiol Spectrum. 2018;6(4):ARBA-0026-2017.

Marrero-Moreno Carelia Martha, Martha Mora-Llanes, Rosa Elena Hernández-Fillor, Michel Báez-Arias, Tania García-Morey, Ivette Espinosa-Castaño. Identificación de enterobacterias productoras de betalactamasas de espectro extendido (BLEEs) en instalaciones porcinas de la provincia Matanzas. Rev Salud Anim .2017; 39(3).

Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24(12):1241-1250. doi: 10.1016/j.cmi.2018.04.004.

Woodford N, Wareham DW, Guerra B, Teale C. Carbapenemas reproducing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J AntimicrobChemother. 2014; 69: 287-291.

Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, et al. Global distribution of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus. Emerg Infect Dis. 2007; 13:594-600.

Sieber RN, Skov RL, Nielsen J, Schulz J, Price LB, Aarestrup FM, Larsen AR, Stegger M, Larsen J. Drivers and dynamics of methicillin-resistant livestock-associated Staphylococcus aureus CC398 in pigs and humans in Denmark. mBio. 2018; 9:e02142-18. Disponible en : https://doi.org/10.1128/mBio.02142-18.

Thomas P. Van Boeckel, João Pires, Reshma Silvester, Cheng Zhao, Julia Song, Global trends in antimicrobial resistance in animals in low- and middle-income countries Science 365, eaaw1944 (2019)

Hernández-Fillor RE, Brilhante M, Espinosa I, Perreten V. 2019. Complete circular genome sequence of a multidrug-resistant Escherichia coli strain from Cuba obtained with Nanopore and Illumina hybrid assembly. Microbiol Resour Announc 8:e01269-19.

Leiva PO, Stojanov M, Zayas Tamayo AM3, Barreras GG, González Aleman M, Martínez Ceballos L, et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus from 4 Cuban hospitals Diagnostic Microbiology and Infectious Disease 81 (2015) 1-3 http://dx.doi.org/10.1016/j.diagmicrobio.2014.10.012

Baez M, Collaud A, Espinosa I, Perreten V.MRSA USA300, USA300-LV and ST5-IV in pigs. Cuba International Journal of Antimicrobial Agents (2017).

Dishon M, Melissa J, Amy BP, Eric MF, Mark EJ. Woolhouse and Bram A.D. van Bunnik Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review Foodborne Pathogens and Disease. 2018.

Artículos más leídos del mismo autor/a

> >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.