Optimización de las condiciones de cultivo para el desarrollo de una biopelícula bacteriana y su aplicación como biofertilizante en Solanum lycopersicum L. var. Río grande

Contenido principal del artículo

Gabriela C. Sarti
Ana E.J. Cristóbal Miguez
Alfredo J. Curá

Resumen

El objetivo del presente trabajo fue optimizar las condiciones de cultivo de Bacillus subtilis subsp. spizizenii para el desarrollo de una biopelícula y su uso como biofertilizante en semillas de tomate (Solanum lycopersicum L. var. Río Grande). Se evaluaron diferentes medios de cultivo para el desarrollo de biopelículas, las cuales se secaron y se les determinó su masa, así como el tiempo de disgregación de las mismas. La siembra de la bacteria se realizó bajo dos tratamientos: suelo fértil y tindalizado. Se midió la masa seca aérea y radicular; las diferencias en la biomasa de parte aérea y radicular del tomate se evaluaron mediante un ANOVA simple. Las medias se compararon utilizando la prueba de Tukey a un nivel de significación de 0,05. El análisis estadístico se realizó con el software Infostat 2016. Las biopelículas obtenidas se evaluaron en términos de porcentajes aritméticos y desviaciones estándares de tres repeticiones. En el medio papa glucosada se obtuvo la mayor cantidad de biopelícula que resultó ser la más resistente a la disgregación. El tratamiento con semillas inoculadas en suelo fértil no demostró mayor desarrollo en las plántulas respecto a los controles sin inocular; sin embargo, cuando se utilizó suelo tindalizado, la biomasa aérea y radicular de las plántulas inoculadas fueron significativamente mayores que los controles sin inocular. La biopelícula desarrollada por Bacillus en el medio papa glucosada podría ser utilizada como biofertilizante en tomate.

Detalles del artículo

Cómo citar
1.
Sarti GC, Cristóbal Miguez AE, Curá AJ. Optimización de las condiciones de cultivo para el desarrollo de una biopelícula bacteriana y su aplicación como biofertilizante en Solanum lycopersicum L. var. Río grande. Rev. Protección Veg. [Internet]. 1 de agosto de 2019 [citado 5 de enero de 2025];34(2). Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1037
Sección
ARTÍCULOS ORIGINALES

Citas

Murillo RAL, Reyes Pérez JJ, López Bustamante RJ, Reyes Bermeo M, Murillo Campuzano G, Sarmaniego Armijos C. Abonos orgánicos y su efecto en el crecimiento y desarrollo del cultivo de tomate (Solanum lycopersicum L.). Centro Agrícola. 2015; 42(4):67-74.

Wakil W, Brustand G, Pening T. Sustainable management of arthropod pest of tomato. 2017. 1er Edition. 372 p.ebook ISBN 9780128135082

Cruz Koizumi YP, Alayón Gamboa JA, Morón Ríos A. Efecto de la fertilización orgánica y de la síntesis química en tomate verde Physalis ixocarpa Brot. (Ex Horn) en Calakmul, Campeche (México). Avances en investigación agropecuaria. 2017; 21(2): 41-53.

Kloepper J, Rodriguez-Ubana R, Zehnder G, Murphy J, Sikora E, Fernandez C. Plant root-bacterial interactions in biological control of soilborne diseases and potencial extension to systemic and foliar diseases. Australasian Plant Pathology. 1999; (28):21-26.

Espinosa Palomeque B, Moreno Reséndez A, Cano Ríos P, De Paul Álvarez Reyna V, Sáenz Mata J Sánchez Galván H et al. Inoculación de rizobacterias promotoras del crecimiento vegetal en tomate (Solanum lycopersicum L.) cv. Afrodita en invernadero. Terra Latinoamérica. 2017, 35:169-178.

Hernández Montiel LG, Chiquito Contreras RG, Castillo Rocha DG, Contreras CJ, Vidal Hernández L, Beltrán Morales FA. Efecto de microcápsulas de Pseudomonas putida sobre crecimiento y rendimiento de pimiento marrón. Revista Mexicana de Ciencias Agrícolas. 2018; 20:325-334.

Prashar P, Kapoor N, Sachdeva S. Rhizosphere: its structure, bacterial diversity and significance. Reviews in Environmental Science and Biotechnology. 2014; 22:1-15.

Borriss R. Bacillus, a plant beneficial bacterium" in Principles of Plant Microbe Interactions. Microbes for Sustainable Agriculture, ed. B. Lugtenberg (Berlin: Springer). 2015; 379- 391.

Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology. 2005; 56 (4):845-857.

Zhiqiong T, Baoying L, Rongyi Z. A novel antifungal protein of Bacillus subtilis B25. SpringerPlus. 2013; 2 (543):2-6.

Baindara P, Mandal SM, Chawla N, Kumar Singh P, Kumar Pinnaka A, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil simple. AMB Express. 2013; 30 (2):465-478.

Trejo M, Douarchea C, Bailleuxa V, Poularda C, Mariota S, Regeardb C, Raspauda E. Elasticity and wrinkled morphology of Bacillus subtilis pellicles. PNAS (Proceedings of the National Academy of Sciences of the United States of America). 2013; 110 (6):2011-2016.

Stanley N, Lazazzera B. Defining the genetic differences between wild and domestic strains of Bacillus subtilius that affect poly DL glutamic acid production and biofilm formation. Molecular Microbiology. 2005; 57(4):1143-1158.

Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova1 Y, Stocker R, Ribbeck K. The Extracellular Matrix Component Psl Provides FastActing Antibiotic Defense in Pseudomonas aeruginosa Biofilms. PLOS Pathogens. 2013; 9(8). http://www.plospathogens.org

Branda SS, Friedman V, Kolter K. Biofilms: the matrix revisited. Trends in Microbiology. 2005; (13):20-26.

Sinha SD, Chatterjee S, Maiti PK, Tarafdar S, Moulik SP. Evaluation of the role of substrate and albumin on Pseudomonas aeruginosa biofilm morphology through FESEM and FTIR studies on polymeric biomaterials. Programation Biomaterials. 2017; 6:27-38.

Berhe N, Tefera Y, Tintagu T. Review on biofilm formation and its control options. International Journal of Advanced Research in Biological Sciences. 2017; 8 (4):122-133.

Tomlinson AD, Fuqua C. Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Current opinion in microbiology. 2009; (12):708-714.

Strauss SL, Stover JK, Kluepfel DA. Impact of biological amendments on Agrobacterium tumefaciens survival in soil. Applied Soil Ecology. 2015; (87):39-48.

Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiology. 2004; (134):320-331.

Ansari FA, Ahmad I. Flourescent Pseudomonas FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and fhotosynthetic attributes. Scientific reports. 2019; 9:45-47.

Godino A, Príncipe A, Fischer S. A pts P deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere. Research in Microbiology. 2016; (167) I:3 p178-189.

Ghosh R, Barman S, Mandal NCh. Phosphate defciency induced bioflm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Scientific Reports. 2019; 9:5477.

Hölscher T, Bartels B, Cheng Lin Y, Monterrosa R, Whelan A, Kolter R, et al. Motility, chemotaxis and aerotaxis contribute to competitiveness during bacterial pellicle biofilm development. Journal Molecular Biology. 2015; (427):3695-3708.

Kobayashi K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. Journal of Bacteriology. 2007; (56):4920-4931.

Lim Y, Jana M, Luong TT, Lee CY. Control of glucose -and NaCl- induced bio?lm formation by rbf in Staphylococcus aureus. Journal of Bacteriology. 2004; (186):722-729.

Morikawa M. Benedficial biofilm formation by industrial bacteria Bacillus subtilis and related species. Journal of Bioscience and Bioengineering. 2006;1 (101):1-8.

Banin E, Vasil M, Greenberg E. Iron and Pseudomonas aeruginosa bio?lm formation. Procceeding. Academic Science. USA. 2005; (102):11076-11081.

Kovács A, Dragoš A. Evolved biofilm: Review on the experimental evolution Studies of Bacillus subtilis Pellicles. Journal of Molecular Biology Article in press. 2019. DOI: 10.1016/j.jmb.2019.02.005.

Kankeu E, Max S, Brink A. Adaptation behaviour of bacterial species and impact on the biodegradation of biodiesel. Brazilian Journal of Chemical Enginering. 2017; (34):469-480.

Vazquez Vazquez JL. Producción, caracterización parcial y evaluación de la capacidad emulsificante de hidrocarburos del bioemulsificante de Actinobacter bouvetii UAM25. (Tesis de posgrado: aspirante a doctorado en biotecnología(. 105 p. Universidad autónoma Metropolitana, México. 2018. http://148.206.53.84/tesiuami/UAMI22467.pdf

Vozza N. Factores de adhesión de Rhizobium leguminosarum y su rol en la formación de biofilms. (Tesis doctoral(. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires 2012. https://digital.bl.fcen.uba.ar/collection/tesis/document/tesis_n5057_Vozza

Yang L, Hiu Y, Liu Y, Molin S. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environmental Microbiology. 2012; (13):1705-1711.

Reisner A, Krogfelt K, Klein B, Zechner E, Molin S. In vivo biofilm formation of commensal and pathogenic Escherichia coli strains: Impact of environmental and genetic factors. Journal Bacteriology. 2006; (188):3572-3581.

Allan V, Callow M, Macaskie L, Paterson-Beedle M. Effect of nutrient limitation on biofilm formation and phosphatase activity of a Citrobacter sp. Microbiology. 2002; 148:277-288.

Huang Y, Dobretsov S, Xiong H, Pei-Yuan Q. Effect of Biofilm Formation by Pseudoalteromonas spongiae on Induction of Larval Settlement of the Polychaete Hydroides elegans. Applied Environmental Microbiology. 2007; 73 (19):228-236.

Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci. 2001; 98:11621-11626.

Branda SS, Vik S, Friedman L, Kolter R. Biofilms: The matrix revisited. Trends Microbiology. 2005; 13:20-26.

Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology. 2006; 59:1229-1238.

Reisner A, Krogfelt K, Klein B, Zechner E, Molin S. In vivo biofilm formation of commensal and pathogenic Escherichia coli strains: Impact of environmental and genetic factors. Journal Bacteriology. 2006; (188):3572-3581.

Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A. Root Colonization by Pseudomonas sp DSMZ 13134 and Impact on the Indigenous Rhizosphere Bacterial Community of Barley. Microbial Ecology. 2010; 60(2):381-393.

Posadas Uribe LF. Promoción del crecimiento vegetal de Bacillus subtilis EA-CB0575, colonización rizosférica y potencial genómico y bioquímico. (Tesis de doctorado en bioquímica). Universidad Nacional de Colombia, Facultad de Ciencias, Medellín, Colombia. 2017. http://bdigital.unal.edu.co/57419/1/43979285.2017.pdf

Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (RPCV): A review. Cogent Food & Agriculture. 2016; 2:1127500.

Sanchez López DB. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fósforo en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología. 2014; (16):122-128.

Niñirola D, Pignata SN, Egea-Gilabert C, Fernández JA. Efecto de las RPCV en la producción y vida útil del berro (Nasturtium officinale) cultivado en bandejas flotantes. III Workshop en Investigación Agroalimentaria, Cartagena, Colombia. 2014. https://iris.unito.it/handle/2318/1520962#.XQuyfBZKjIU