Compatibilidad in vitro entre Rhizobium sp. (CIAT 899) y cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg y Pochonia chlamydosporia (Kamyschko ex Barron y Onions) Zare y Gams

Contenido principal del artículo

Danay Ynfante Martinez
Ivonne González Marquetti
Belkis Peteira Delgado-Oramas
Jersys Arévalo Ortega
Rolisbel Alfonso de la Cruz
Benedicto Martínez Coca
Belkis Morales Mena
Susana Gorrita Ramirez
María Caridad Nápoles García

Resumen

El presente trabajo se desarrolló con el objetivo de evaluar la compatibilidad in vitro entre Rhizobium (CIAT 899) con cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg, y Pochonia chlamydosporia var. catenulata (Kamyschko ex Barron y Onions) Zare y Gams. La compatibilidad se determinó mediante la antibiosis (previo al contacto; a las 48 y 240 horas) y la competencia por espacio a través de la técnica del Cultivo Dual (según la escala de grados referida por Bell y el cálculo del porcentaje de inhibición del crecimiento radial). Momento antes del contacto con la colonia de Rhizobium, las colonias de T. asperellum y la de P. chlamydosporia, mostraron un efecto inhibitorio respecto al control; en el caso de P. chlamydosporia, sin diferencias significativas. A las 96 horas, las cepas de T. asperellum se ubicaron en el grado 1 de la escala de Bell; mientras que, P. chlamydosporia se ubicó en el grado 2, a los 18 días. En este momento, las cepas de T. asperellum no mostraron inhibición frente a Rhizobium, respecto al control; sin embargo, para P. chlamydosporia este efecto fue disminuyendo, mostrado 2,5 % de inhibición a los 18 días.

Detalles del artículo

Cómo citar
1.
Ynfante Martinez D, González Marquetti I, Delgado-Oramas BP, Arévalo Ortega J, Alfonso de la Cruz R, Martínez Coca B, Morales Mena B, Gorrita Ramirez S, Nápoles García MC. Compatibilidad in vitro entre Rhizobium sp. (CIAT 899) y cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg y Pochonia chlamydosporia (Kamyschko ex Barron y Onions) Zare y Gams. Rev. Protección Veg. [Internet]. 11 de octubre de 2022 [citado 5 de enero de 2025];37(3):https://cu-id.com/2247/v37n3e06. Disponible en: https://revistas.censa.edu.cu/index.php/RPV/article/view/1274
Sección
ARTÍCULOS ORIGINALES

Citas

Fijación Biológica de Nitrógeno Atmosférico. El nitrógeno y su importancia. INTAGRI. 2018. Disponible en: https://www.intagri.com/articulos/nutricion-vegetal/fijacion-biologica-de-nitrogeno-atmosferico. (Consulta: 2 agosto 2022)

Fijación Biológica de Nitrógeno: Plantas y Bacterias. 2022. Disponible en: https://eos.com/es/blog/fijacion-biologica-de-nitrogeno/(Consulta: 2 agosto 2022)

Cuadrado B, Rubio G, Santos W. Caracterización de cepas de Rhizobium y Bradyrhizobium (con habilidad de nodulación) seleccionados de los cultivos de fríjol caupi (Vigna unguiculata) como potenciales bioinóculos. Rev. Colomb. Cienc. Quím. Farm. 2009; 38 (1): 78-104.

Mikhailova N. El uso equilibrado de fertilizante gracias a las técnicas nucleares contribuye a aumentar la productividad y a proteger el medio ambiente. Boletín del OIEA. 2020. Disponible en: https://www.iaea.org/es/newscenter/news/el-uso-equilibrado-de-fertilizante-gracias-a-las-tecnicas-nucleares-contribuye-a-aumentar-la-productividad-y-a-proteger-el-medio-ambiente. (Consulta: 8 agosto 2022)

Nagananda GS, Das A, Bhattacharya S, Kalpana T. In vitro studies on the effects of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonellafoenum-graecum L. using a novel glass marble containing liquid medium. Int J Botany. 2010; 6 (4): 394-403.

Boraste A, Vamsi K, Jhadav A, Khairnar Y, Gupta N, Trivedi S, et al. Biofertilizers: a novel tool for Agriculture. Int J Microbiol. 2009; 1 (2): 23-31.

Sadowsky MJ. Competition for nodulation in the soybean / Bradyrhizobium symbiosis. En: Triplett EW. (Ed.). Prokaryotic nitrogen fixation. Horizon Scientific Press. Wymondham, UK. 2000; 279 pp.

Samuels GJ. Trichoderma: a review of biology and systematic of the genus. Mycol Res. 1996; 100 (8): 923-935.

Bader AN, Salerno GL, Covacevich F, Consolo VF. Bioformulation of Trichoderma harzianum in solid substrate and effects of its application on pepper plants. Rev. Fac. Agron. 2020; 119 (1): 1-9. https://doi.org/10.24215/16699513e037.

Arévalo J, Hidalgo-Díaz L, Martins I, Souza JF, Castro JMC, Carneiro RMDG, et al. Cultural and morphological characterization of Pochonia chlamydosporia and Lecanicillium psalliotae isolated from Meloidogyne mayaguensis eggs in Brazil. Tropical Plant Pathology. 2009; 34 (3):158-163.

Ceiro-Catasú WG, Hidalgo-Viltres M, Hidalgo-Díaz L, Arévalo-Ortega J, García-Bernal M, Mazón-Suástegui JM. Establecimiento in vitro del hongo nematófago Pochonia chlamydosporia var. catenulata en diferentes suelos. Terra Latinoamericana. 2021; 39: 1-7. e792. https://doi.org/10.28940/terra.v39i0.792.

Larriba E, Jaime MDLA, Nislow C, Martín NJ, López LLV. Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Jour. of Plant Research. 2015; 128 (4): 665-678.

Camargo-Cepeda D, Ávila E. Efectos del Trichoderma sp. sobre el crecimiento y desarrollo de la arveja (Pisum sativum L.). Ciencia y Agricultura. 2014; 11 (1): 91-100.

Zhao L, Zhang Ya-qing. Effects of phosphate solubilization and phytohormone stress. Jour. of Integrative Agriculture. 2015; 14 (8): 1588-1597.

Hoyos-Carvajal L, Duque G, Orduz S. Antagonismo in vitro de Trichoderma spp. sobre aislamientos de Sclerotinia spp. y Rhizoctonia spp. Rev. Colombiana de Ciencias Horticolas. 2011; 2 (1): 76-86.

Lopez-Llorca LV, Gómez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F, et al. Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology. 2010; 47: 342-351.

Kerry BR, Hirsch PR. Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. En: Daviers K, Spiedel Y (Eds). Biological Control of Plant-Parasitic Nematodes. Springer Netherlands. 2011; 171-182.

González-Marquetti I, Infante-Martínez D, Arias-Vargas Y, Gorrita-Ramírez S, Hernández-García T, de la Noval-Pons BM, et al. Efecto de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg sobre indicadores de crecimiento y desarrollo de Phaseolus vulgaris L. cultivar BAT-304. Rev. de Protección Veg. 2019; 34 (2): 1-10.

Salina Ventura R, Boriano Bonilla B. Efecto de Trichoderma viride y Bradyrhizobium yuanmingense en el crecimiento de Capsicum annuum en condiciones de laboratorio. REBIOLEST. 2014; 2 (2): e32.

Bécquer CJ, Ramos Y, Nápoles JA, Dolores AM. Efecto de la interacción Trichoderma-rizobio en Vigna luteola SC-123. Pastos y Forrajes. 2004; 27 (2): 139-145.

Martínez B, Solano T. Antagonismo de Trichoderma spp. frente a Alternaria solani (Ellis & Martin) Jones y Grout. Rev. Protección Veg. 1995; 10 (3): 221-225.

Bell K, Wells D, Markham R. In vitro antagonismo of Trichoderma species against six fungal plant pathogers. Phytopathol. 1982; 72: 379-382.

Samaniego G, Ulloa S, Herrera S. Hongos del suelo antagonistas de Phymatotrichum omnivorum. Rev. Mex. Fitopatología.1989; 8: 86-95.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [programa de cómputo]. Córdoba, Argentina: Universidad Nacional de Córdoba. 2017. Disponible en: http://www.infostat.com.ar/.

Woo L, Lorito M. Exploiting the interactions between fungal antagonists, pathogens and the plant for control. En: Vurro M, Gressel J (Eds). Novel Biotechnologies for Control Agent Enhancement and Management. Amsterdam, The Netherlands: IOS, Springer Press. 2007; 107-130.

Talibi I, Boubaker H, Boudyach EH, Ait Ben, Aoumar A. Alternative methods for the control of postharvest citrus diseases. Jour. Applied Microbiol. 2014; 117 (1): 1-17.

Twelker S, Oresnik LJ, Hynes MF. Bacteriocins of Rhizobium leguminosarum. A molecular analysis. Highlights of nitrogen fixation research. En: Martínez E. &, Hernández G (Eds). Kluwer Academic/Plenum Publishers, New York. 1999;20: 105

Bécquer CJ, Lazarovits G, Lalin I. Interacción in vitro entre Trichoderma harzianum y bacterias rizosféricas estimuladoras del crecimiento vegetal. Revista Cubana de Ciencia Agrícola. 2013; 47 (1): 97-102.

Castro-Toro M, Rivillas-Osorio A. Trichoderma spp. modos de acción, eficacia y usos en el cultivo de café. Boletín Ténico Cenicafé. 2012; 38: 31 pp.

Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from "omics" to the field. Annu Rev. Phytopathol. 2010; 48: 395-417.

De la Cruz-Quiroz R, Roussos S, Rodríguez-Herrera R, Hernández-Castillo D, Aguilar CN. Growth inhibition of Colletotrichum gloesporioides and Phytophthora capsici by native Mexican Trichoderma strains. Karbala Int. J. of Modern Science. 2018; 4: 237-243.

Hoyos-Carvajal L, Duque G, Orduz S. Antagonismo in vitro de Trichoderma spp. sobre aislamientos de Sclerotinia spp. y Rhizoctonia spp. Rev. Colombiana de Ciencias Horticolas. 2011; 2 (1): 76-86.

Freitas-Chagas Junior A, Gonçalves de Oliveira A, Rodrigues dos Santos G, Barbosa- Reis H, França-Borges Chagas L, Oliveira-Miller L. Combined inoculation of rhizobia and Trichoderma spp. on cowpea in the savanna, Gurupi-TO, Brazil. Revista Brasileira de Ciências Agrárias. 2015; 10 (1):27-33.

Hoyos-Carvajal L, Orduz S, Bissett J. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control. 2009; 51 (3): 409-416.

Mweetwa AM, Chilombo G, Gondwe BM. Nodulation, nutrient uptake and yield of common bean inoculated with Rhizobia and Trichoderma in an acid soil. J. Agric. Sci. 2016; 8 (12):61-71.

Tanusree Das, Sunita Mahapatra, Srikanta Das. In vitro Compatibility Study between the Rhizobium and Native Trichoderma Isolates from Lentil Rhizospheric Soil. Int. J. Curr. Microbiol. App. Sci. 2017; 6 (8): 1757-1769.

González-Marquetti I, Ynfante-Martínez D, Gorrita S, Morales-Mena B, Nápoles MC, Peteira Delgado-Oramas B, et al. Efectos de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg y Azofert ® sobre el crecimiento y desarrollo de Phaseolus vulgaris L. Rev. de Protección Veg. 2021; 36 (3):1-9.

Zaki MJ, Ghaffar A. Combined effects of microbial antagonists and nursery fertilizers on infection of mung bean by Macrophomina phaseolina (Tassi) Gord. Pakistan Phytopatology. 1995; 1: 17.

Tsimilli-Michael M, Eggenberg P, Biro B, Köves- Pechy K, Vörös I, Strasser RJ. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O- J-I-P. Appl. Soil Ecol. 2000; 15 (2):169-182. ISSN 0929-1393, https://doi.org/10.1016/S0929-1393(00)00093-730

Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J. Environ Manage. 2020; DOI: 10.1016/j.jenvman.2019.109982.

Kavadia A, Omirou M, Fasoula DA, Louka F, Ehaliotis C, Ioannides IM. Co-inoculations with rhizobia and arbuscular mycorrhizal fungi alters mycorrhizal composition and lead to synergistic growth effects in cowpea that are fungal combination-dependent. Appl. Soil Ecol. 2021; 167: 104013.

Zare R, Gams W, Evans HC. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia. 2001; 73: 51-86.

Puertas A, de la Noval BM, Martínez B, Miranda I, Fernández F, Hidalgo-Díaz L. Interacción Pochonia chlamydosporia var. catenulata con Rhizobium sp., Trichoderma harzianum y Glomus clarum en el control de Meloidogyne incognita. Rev. Protección Veg. 2006; 21 (2): 80-89.

Siddiqui IA, Shaukat SS. Combination of Pseudomonas aeruginosa and Pochonia chlamydosporia for Control of Root-Infecting Fungi in Tomato. J. Phytopathology. 2003; 151: 215-222.

Monteiro Avelar TS. Ação combinada de Pochonia chlamydosporia e outros microrganismos no controle do nematoide de galhas e no desenvolvimento vegetal. [Tese doctor scientiae]. Universidadde Federal de Viçosa, Brasil. 2017. 100 pp.

Artículos más leídos del mismo autor/a

> >>