Actividad antibacteriana del aceite esencial de Thymus vulgaris L. sobre Xanthomonas phaseoli pv. phaseoli y su efecto en la membrana citoplasmática

Contenido principal del artículo

Annie Rubio Ortega
María C. Travieso Novelles
Mylene Corso López
Beatriz Alvarez Pita
Odaylin Plascencia Marquez
Güendis Leal Sanabria
Yaíma Sánchez Pérez
Ivette Espinosa Castaño
Oriela Pino Pérez

Resumen

El objetivo de este trabajo fue determinar la actividad antibacteriana del aceite esencial de Thymus vulgaris L., extraido de plantas cultivadas en Cuba, sobre Xanthomonas phaseoli pv. phaseoli (Xap) y su efecto en la membrana citoplasmática. Se evaluó la actividad antibacteriana por los métodos de difusión en agar con discos y diluciones seriadas, para determinar la concentración mínima inhibitoria (CMI) y la concentración mínima bactericida (CMB). Se realizó el ensayo de tiempo de muerte celular para evaluar la rapidez del efecto bactericida. Para determinar el efecto sobre la membrana, se realizaron los ensayos de bacteriólisis, pérdida de contenido celular y determinación de proteínas totales liberadas por acción del aceite. El aceite esencial de T. vulgaris posee una actividad antibacteriana fuerte sobre la cepa Xap1, con una CMI de 0,3 mg. ml-1 y una CMB de 0,6 mg. ml-1. Esta esencia, a la CMB, provoca la muerte de 106 UFC. ml-1 de Xap1 en 30 min de exposición. El aceite de T. vulgaris incrementa la permeabilidad de la membrana de Xap1, con la salida de componentes celulares, lo cual desencadena la muerte celular.

Detalles del artículo

Cómo citar
Rubio Ortega, A. ., Travieso Novelles, M. C. ., Corso López, M. ., Alvarez Pita, B. ., Plascencia Marquez, O. ., Leal Sanabria, G. ., Sánchez Pérez, Y. ., Espinosa Castaño, I. ., & Pino Pérez, O. . (2023). Actividad antibacteriana del aceite esencial de Thymus vulgaris L. sobre Xanthomonas phaseoli pv. phaseoli y su efecto en la membrana citoplasmática. Revista De Protección Vegetal, 38, https://cu-id.com/2247/v38e19. Recuperado a partir de https://revistas.censa.edu.cu/index.php/RPV/article/view/1302
Sección
ARTÍCULOS ORIGINALES

Citas

Gaudin C, Gihaut C, Briand M, Marques ASA, Ferreira MASV, Jacques M-A, et al. Whole Genome Sequences of Nine Xanthomonas Strains Responsible for Common Bacterial Blight of Bean. Microbiol Resour Announc. 2023;12(3):e01259-22. DOI: 10.1128/mra.01259-22

de Paiva B, Wendland A, Rossato M, Velloso Ferreira M d. S. Virulence and type III effector diversities of Xanthomonas citri pv. fuscans and X. phaseoli pv. phaseoli in Brazil. Journal of Phytopathology. 2022;170(1):1–14. DOI: 10.1111/jph.13049

Corzo-López M, Rivero-González D, Zamora-Gutiérrez L, Martínez-Zubiaur Y, Martínez-Coca B. Detección e identificación de nuevos aislados de Xanthomonas axonopodis pv. phaseoli en cultivares de frijol común (Phaseolus vulgaris L.) en la provincia Mayabeque, Cuba. Revista de Protección Vegetal [Internet]. 2015;30(2):97–103. Available from: http://scielo.sld.cu/scielo.php?pid=S1010-27522015000200003&script=sci_arttext&tlng=pt

Manda R, Addanki V, Srivastava S. Bacterial wilt of solanaceous crops. International Journal of Chemical Studies. 2020;8(6):1048–57. DOI: 10.22271/chemi.2020.v8.i6o.10903

Kumar M, Jaiswal S, Sodhi K, Shree P, Singh D, Agrawal et al. PK. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environment International. 2019;124:448–61. DOI: 10.1016/j.envint.2018.12.065

Katsoulas N, Løes A, Andrivon D, Cirvilleri G, de Cara M, Kir et al. A. Current use of copper, mineral oils and sulphur for plant protection in organic horticultural crops across 10 European countries. Organic Agriculture. 2020;10:159–71. DOI: 10.1007/s13165-020-00330-2

Kumar J, Ramlal A, Mallick D, Mishra V. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. 2021;10(6):1–15. DOI: 10.3390/plants10061185

Commission implementing regulation (EU) No 354/2014 of 8 April 2014. Official Journal of the European Union [Internet]. 2014;354:1–18. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:JOL_2014_106_R_0004&from=EN

Falleh H, Ben Jemaa M, Saada M, Ksouri R. Essential oils: A promising eco-friendly food preservative. Food Chemistry. 2020;330:127268. DOI: 10.1016/j.foodchem.2020.127268

Galovičová L, Borotová P, Valková V, Vukovic NL, Vukic M, Štefániková J, et al. Thymus vulgaris essential oil and its biological activity. Plants. 2021;10(9):1959. DOI: 10.3390/plants10091959

Benachour H, Ramdani M, Lograda T, Chalard P, Figueredo G. Chemical composition and antibacterial activities of Capparis spinosa essential oils from Algeria. Biodiversitas. 2020;21(1):161–9. DOI: 10.13057/biodiv/d210121

Constantin E, Cleenwerck I, Maes M, Baeyen S, Malderghem C Van, Vos PD, et al. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology Journal. 2016;65:792–806. DOI: 10.1111/ppa.12461

Performance standards for antimicrobial disk susceptibility tests [Internet]. 13th ed. Clinical and Laboratory Standards Institute; 2018. Available from: https://clsi.org/standards/products/microbiology/documents/m02

Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically-M07 [Internet]. 11th ed. Clinical and Laboratory Standards Institute; 2018 [cited. Available from: https://clsi.org/standards/products/microbiology/documents/m07]

Guinoiseau E, Luciani A, Serra DDR, Quilichini Y, Berti L, Lorenzi V. Primary mode of action of Cistus ladaniferus L. essential oil active fractions on Staphylococcus aureus strain. AiM. 2015;05(13):881–90. DOI: 10.4236/aim.2015.513092

Carson C, Mee B, Riley T V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy. 2002;46(6):1914–20. DOI: 10.1128/AAC.46.6.1914-1920.2002

Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. Journal of biological chemistry. 1951;193(1):265–75. DOI: 10.1016/S0021-9258(19)52451-6

Mazzarrino G, Paparella A, Chaves-López C, Faberi A, Sergi M, Sigismondi C, et al. Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control. 2015;50:794–803. DOI: 10.1016/j.foodcont.2014.10.029

Rubio-Ortega A, Travieso-Novelles M, Riverón-Alemán Y, Peña-Rodríguez J, Espinosa-Castaño I, Pino-Pérez O. Actividad antibacteriana de aceites esenciales de plantas cultivadas en Cuba sobre cepas de Salmonella enterica. Revista de Salud Animal [Internet]. 2018;40(3):1–10. Available from: http://revistas.censa.edu.cu/index.php/RSA/article/view/998

Rojas-Fernández M, López-Corzo M, Sánchez-Pérez Y, Brito D, Montes De Oca R, Martínez Y, et al. Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subsp. carotovorum. Revista de Protección Vegetal [Internet]. 2014;29(3):197–203. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010-27522014000300006

Miller S, Pinto Ferreira J, LeJeune J. Antimicrobial use and resistance in plant agriculture: A one health perspective. Agriculture. 2022;12(289). DOI: 10.3390/vetsci10050319

Lamichhane J, Osdaghi E, Behlau F, Köhl J, Jones J, Aubertot J Noël. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agronomy for Sustainable Development. 2018;38(28). DOI: 10.1007/s13593-018-0503-9

Proto MR, Biondi E, Baldo D, Levoni M, Filippini G, Modesto M, et al. Essential Oils and Hydrolates: Potential Tools for Defense against Bacterial Plant Pathogens. Microorganisms. 2022;10(4):702. DOI: 10.3390/microorganisms10040702

Chudasama K, Thaker V. Screening of potential antimicrobial compounds against Xanthomonas campestris from 100 essential oils of aromatic plants used in India: an ecofriendly approach. Archives Of Phytopathology And Plant Protection. 2012;45(7):37–41. DOI: 10.1080/03235408.2011.595967

Alonso-Gato M, Astray G, Mejuto JC, Simal-Gandara J. Essential Oils as Antimicrobials in Crop Protection. Antibiotics. 2021;10(1):34. DOI: 10.3390/antibiotics10010034

Mačionienė I, Čepukoit D, Šalomskienė J, Černauskas D, Burokienė D, Šalaševičienė A. Effects of Natural Antimicrobials on Xanthomonas Strains Growth. Horticulturae. 2021;8(1):7. DOI: 10.3390/horticulturae8010007

Aziz Z, Ahmad A, Setapar S, Karakucuk A, Azim M, Lokhat D, et al. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - a review. Current Drug Metabolism. 2018;19(13):1100–10. DOI: 10.2174/1389200219666180723144850

Salehi B, Mishra AP, Shukla I, Sharifi‐Rad M, Contreras MDM, Segura‐Carretero A, et al. Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research. 2018;32(9):1688–706. DOI: 10.1002/ptr.6109

Chauhan A, Kang S. Thymol disrupts the membrane integrity of Salmonella serovar Typhimurium in vitro and recovers infected macrophages from oxidative stress in an ex vivo model. Research in Microbiology. 2014;165(7):559–65. DOI: 10.1016/j.resmic.2014.07.001

Hossain F, Follett P, Dang Vu K, Harich M, Salmieri S, Lacroix M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiology. 2016;53:24–30. DOI: 10.1016/j.fm.2015.08.006

Mirzaei-Najafgholi H, Tarighi S, Golmohammadi M, Taheri P. The effect of citrus essential oils and their constituents on growth of Xanthomonas citri subsp. citri. Molecules. 2017;22(4):591. DOI: 10.3390/molecules22040591

Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. Front Sustain Food Syst. 2021;5:653420. DOI: 10.3389/fsufs.2021.653420

Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, et al. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. Journal of Agricultural and Food Chemistry. 2007;55(15):6300–8. DOI: 10.1021/jf070094x

Mohandas N, Kent LM, Raudsepp A, Jameson GB, Williams MAK. Progress toward plug-and-play polymer strings for optical tweezers experiments: Concatenation of DNA using streptavidin linkers. ACS Omega. 2022;7(7):6427–35. DOI: 10.1021/acsomega.2c00198

Horváth G, Kovács K, Kocsis B, Kustos I. Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia. 2009;70:1645–50. DOI: 10.1365/s10337-009-1374-7

Isman MB. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews. 2020;19(2):235–41. DOI: 10.1007/s11101-019-09653-9

Pavela R, Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends in Plant Science. 2016;21(12):1000–7. DOI: 10.1016/j.tplants.2016.10.005

Artículos más leídos del mismo autor/a

> >>