Antimicrobial activity of bioactive crude extracts of Morinda royoc L. roots grown in Cuba

Main Article Content

Geeisy Angela Cid Valdés
Claudia Linares Rivero
Maribel Rivas Paneca
Janet Quiñones-Gálvez
Yanelis Capdesuñer Ruiz

Abstract

The aim of this work was to determine the in vitro antimicrobial activity of the anthraquinone-rich crude extract of Morinda royoc L. roots. Its inhibitory activity was tested on two plant-pathogen bacteria (Xanthomonas campestris pv phaseoli and Pectobacterium carotovorum subsp. carotovorum), two human-pathogen bacteria (Bacillus licheniformis and Stenotrophomonas maltophilia) and three plant-pathogen fungi (Rhizoctonia solani Kϋhn, Stemphylium solani Webber and Sarocladium oryzae Sawada). The extract was prepared at 10 mg·ml-1, previously obtained by Soxhlet extraction method. To evaluate the antimicrobial activity on bacteria, the agar diffusion method was used, whereas the microdilution method was developed to evaluate the inhibitory activity against fungi. The results obtained from this study demonstrated that the anthraquinone-rich extract was effective in inhibiting more than 50 % of Xanthomonas campestris growth without significant differences between the different doses. After 48 hours and under the same conditions, growth inhibition ca. 50 % of Bacillus licheniformis and Stenotrophomonas maltophilia was observed at the doses of 150 and 450 µg, respectively. On the other hand, all the selected fungi in this study showed susceptibility to the extract after 48 hours of incubation. The highest antifungal activity was achieved on Rhizoctonia solani, with a growth reduction ca. 50 % at concentrations of 1.25 and 2.5 mg·ml-1. After 72 hours of incubation, no significant differences were observed in the growth of any of the three fungi. From all the pathogens selected for this study, only Pectobacterium carotovorum showed no susceptibility to any of the evaluated doses of the extract.

Article Details

How to Cite
Cid Valdés, G. A., Linares Rivero, C., Rivas Paneca, M., Quiñones-Gálvez, J., & Capdesuñer Ruiz, Y. (2020). Antimicrobial activity of bioactive crude extracts of Morinda royoc L. roots grown in Cuba. Revista De Protección Vegetal, 35(1). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1078
Section
ORIGINAL ARTICLES

References

Ringuelet J. Productos naturales vegetales. La Plata: D - Editorial de la Universidad Nacional de La Plata; 2013.

Gandhi S, Mahajan V, Bedi Y. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. 2014; 241(2):303-317.

Shahzad A, Sharma S, Siddiqui S. Biotechnological strategies for the conservation of medicinal and ornamental climbers. Cham: Springer; 2016.

Borroto J, Trujillo R, Waksman N, Hernández M, Salazar R. Actividad antimicrobiana y toxicidad frente a Artemia salina del extracto diclorometánico de raíces de Morinda royoc L. Revista Cubana de Plantas Medicinales. 2011; 16 (1): 34-42.

Busto V, Calabró-López A, Rodríguez-Talou J, Giulietti A, Merchuk J. Anthraquinones production in Rubia tinctorum cell suspension cultures: Down scale of shear effects. Biochemical Engineering Journal. 2013; 77:119-128.

Olaoluwa O, Aiyelaagbe O, Irwin D, Reid M. Novel anthraquinone derivatives from the aerial parts of Antigonon leptopus Hook & Arn. Tetrahedron. 2013;69(33):6906-6910.

Barrera Vázquez M, Comini L, Martini R, Núñez Montoya S, Bottini S, Cabrera J. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrasonics Sonochemistry. 2014;21(2):478-484.

Perassolo M, Cardillo A, Mugas M, Núñez Montoya S, Giulietti A, Rodríguez Talou J. Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum. Industrial Crops and Products. 2017; 105:124-132.

Mishra B, Kishore N, Tiwari V, Singh D, Tripathi V. A novel antifungal anthraquinone from seeds of Aegle marmelos Correa (family Rutaceae). Fitoterapia. 2010;81(2):104-107.

Kamiya K, Hamabe W, Tokuyama S, Hirano K, Satake T, Kumamoto-Yonezawa Y. Inhibitory effect of anthraquinones isolated from the Noni (Morinda citrifolia) root on animal A-, B- and Y-families of DNA polymerases and human cancer cell proliferation. Food Chemistry. 2010;118(3):725-730.

Ahmad A, Alkarkhi A, Hena S, Siddique B, Dur K. Optimization of Soxhlet extraction of Herba leonuri using factorial design of experiment. International Journal of Chemistry. 2010;2(1).

Han Y, Van der Heijden R, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell, Tissue and Organ Culture. 2001; 67 (3): 201-220.

Schulte U, El Shagi H, Zenk M. Optimization of 19 Rubiaceae species in cell suspension cultures of Cinchona ledgeriana. Plant Cell Rep. 1984; 3 51-54.

Bauer A, Kirby W, Sherris J, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology. 1966;45(4_ts):493-496.

Bertani G. Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. Journal of bacteriology. 1951; 62 (3): 293.

Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L, Cuesta I, Buitrago M. Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and european committee on antimicrobial susceptibility testing (EUCAST) broth microdilution reference methods and with the sensititre yeast one and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. Journal of Clinical Microbiology. 2010;48(5):1782-1786.

Alves D, Pérez-Fons L, Estepa A, Micol V. Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin. Biochemical Pharmacology. 2004;68(3):549-561.

Pandey R, Mishra A. Antibacterial activities of crude extract of Aloe barbadensis to clinically isolated bacterial pathogens. Applied biochemistry and biotechnology. 2010; 160 (5): 1356-1361.

Domingo D, López-Brea M. Plantas con acción antimicrobiana. Rev Esp Quimioterap. 2003; 16 (4): 385-393.

Mondal K, Dureja P, Prakash Verma J. Management of Xanthomonas camprestris pv. malvacearum-induced blight of cotton through phenolics of cotton Rhizobacterium. Current Microbiology. 2001;43(5):336-339.

Ciafardini G, Zullo B. Antimicrobial activity of oil-mill waste water polyphenols on the phytopathogen Xanthomonas campestris spp. Annals of Microbiology. 2003; 53 (3): 283-290.

Mohanta T, Patra J, Rath S, Pal D, Thatoi H. Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium Lf. Scientific Research and Essays. 2007; 2 (11): 486-490.

Vidigal P, Müsken M, Becker K, Häussler S, Wingender J, Steinmann E, Kehrmann J, Gulbins E, Buer J, Rath P. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm. PloS one. 2014; 9 (4): e92876.

Betts J, Kelly S, Haswell S. Antibacterial effects of theaflavin and synergy with epicatechin against clinical isolates of Acinetobacter baumannii and Stenotrophomonas maltophilia. International Journal of Antimicrobial Agents. 2011;38(5):421-425.

Singh U, Pandey V, Wagner K, Singh K. Antifungal activity of ajoene, a constituent of garlic (Allium sativum). Canadian Journal of Botany. 1990;68(6):1354-1356.

Goss M, Mafongoya P, Gubba A. Moringa oleifera extracts effect on Fusarium solani and Rhizoctonia solani growth. Asian Research Journal of Agriculture. 2017;6(1):1-10.

Anfoka G, Al-Mughrabi K, Aburaj T, Shahrour W. Antifungal activity of olive cake extracts. Phytopathologia mediterranea. 2001; 40 (3): 240-244.

Vinale F, Ghisalberti E, Flematti G, Marra R, Lorito M, Sivasithamparam K. Secondary metabolites produced by a root-inhabiting sterile fungus antagonistic towards pathogenic fungi. Letters in Applied Microbiology. 2010;50(4):380-385.

Al-Mughrabi K. Antimicrobial activity of extracts from leaves, stems and flowers of Euphorbia macroclada against plant pathogenic fungi. Phytopathologia mediterranea. 2003; 42 (3): 245-250.

Iglesias D, Ojito K, Linares C, Portal O. Actividad antifúngica in vitro de extractos de hojas de Citrus spp. frente a Stemphyllium solani Weber. Centro Agrícola. 2017; 44 (3): 5-12.

Natrajan R, Lalithakumari D. Antifungal activity of the leaf extract of Lawsonia inermis on Drechslera oryzae. Indian Phytopath, 1987; 40 (3): 390-395.

Meera T, Balabaskar P. Antifungal activity of botanicals against Sarocladium oryzae causing rice sheath rot disease. International Journal of Food, Agriculture and Veterinary Sciences. 2012; 2 (1): 121-127.

Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme and Microbial Technology. 2008;42(3):216-221.

Yang X, Yang L, Wang S, Yu D, Ni H. Synergistic interaction of physcion and chrysophanol on plant powdery mildew. Pest Management Science. 2007;63(5):511-515.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.