Status of CaLsol vectors that infect solanaceous plants in the American regions, implications for Cuba, II: Host plants, damages and management

Main Article Content

Heyker L. Baños Díaz
Lizandra Guerra Arzuaga
Alberto Fereres

Abstract

Bactericera cockerelli Sulc, the potato / tomato psyllid (Solanum tuberosum and S. lycopersicum), is recognized as a threat to the production of solanaceous crops because it is an efficient vector of the bacterium Candidatus Liberibacter solanacearum (CaLso) in the American continent, Europe, and New Zealand. The biological and genetic characteristics of the insect make its management difficult, and so do the high number of host, refuge. and feeding plants in which it can be found. Furthermore, the influence of climate change has caused psyllid populations to establish and colonize new areas and countries. At present, the psyllid vectors of microorganisms that cause diseases in plants are widely distributed, and studies are being carried out to understand the impact of their populations on intensive agricultural production systems. In the last decade, studies on the application of new biological control and management techniques have also increased aiming to count on fast and efficient alternatives for reducing the effects on crops and economy. A total of 74 scientific papers related to the host plants of these insect vectors, their biological and chemical control strategies, and the novel alternatives for their management were analysed. In order to maintain surveillance over the vector, the present status of the identification of these species in Cuba, the situation concerning the presence of the cultivation system. -psilid-CaLso in the world and the American and Caribbean regions, as well as the possible implications of the presence of these species for the Cuban agriculture were studied in depth.

Article Details

How to Cite
Baños Díaz, H. L., Guerra Arzuaga, L., & Fereres, A. (2021). Status of CaLsol vectors that infect solanaceous plants in the American regions, implications for Cuba, II: Host plants, damages and management. Revista De Protección Vegetal, 36(1). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1127
Section
REVIEW ARTICLES

References

Burckhardt D, Ouvrard D, Queiroz D, Percy D. Psyllid Host-Plants (Hemiptera: Psylloidea): Resolving a Semantic Problem. Florida Entomol [Internet]. 2014;97(1):242-6. Available from: http://www.bioone.org/doi/abs/10.1896/054.097.0132

Munyaneza JE. Zebra Chip Disease, Candidatus Liberibacter, and Potato Psyllid: A Global Threat to the Potato Industry. Am J Potato Res [Internet]. 2015 Apr 13 [cited 2019 Jan 8];92(2):230-5. Available from: http://link.springer.com/10.1007/s12230-015-9448-6

CABI/EPPO. Bactericera cockerelli (tomato_potato psyllid) [Internet]. Invasive Species Compendium. 2019 [cited 2020 Feb 15]. Available from: https://www.cabi.org/isc/datasheet/45643

Caicedo JD, Simbaña LL, Calderón DA, Lalangui1 KP, Rivera-Vargas LI. First report of ‘ Candidatus Liberibacter solanacearum ’ in Ecuador and in South America. Australas Plant Dis Notes. 2020;15(6):10-2.

Haapalainen M. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Ann Appl Biol [Internet]. 2014 Sep [cited 2019 Jan 8];165(2):172-98. Available from: http://doi.wiley.com/10.1111/aab.12149

Buchman JL, Fisher TW, Sengoda VG, Munyaneza JE. Zebra Chip Progression: From Inoculation of Potato Plants with Liberibacter to Development of Disease Symptoms in Tubers. Am J Potato Res. 2012;89(2):159-68.

Rush CM, Workneh F, Rashed A. Significance and Epidemiological Aspects of Late-Season Infections in the Management of Potato Zebra Chip. Phytopathology [Internet]. 2015;105(7):929-36. Available from: http://apsjournals.apsnet.org/doi/10.1094/PHYTO-12-14-0365-FI

Munyaneza JE, Henne DC. Leafhopper and Psyllid Pests of Potato [Internet]. Insect Pests of Potato. Elsevier Inc.; 2013. 65-102 p. Available from: http://dx.doi.org/10.1016/B978-0-12-386895-4.00004-1

Villagómez CMM, Sicairos C del RL, Valenzuela JÁL, Espinal LAH, Félix SV, Tiznado JAG. Presencia de Candidatus Liberibacter solanacearum en Bactericera cockerelli Sulc asociada con enfermedades en tomate , chile y papa. Rev Mex Cienc Agríc. 2018;9(3):499-509.

Nissinen AI, Haapalainen M, Jauhiainen L, Lindman M, Pirhonen M. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by “Candidatus Liberibacter solanacearum.” Plant Pathol. 2014;63(4):812-20.

Haapalainen M, Kivimäki P, Latvala S, Rastas M, Hannukkala A, Jauhiainen L, et al. Frequency and occurrence of the carrot pathogen ‘ Candidatus Liberibacter solanacearum’ haplotype C in Finland. Plant Pathol [Internet]. 2017 May [cited 2019 Jan 8];66(4):559-70. Available from: http://doi.wiley.com/10.1111/ppa.12613

Haapalainen M, Satu L, Marika R, Jinhui W, Hannukkala A, Pirhonen M, et al. Carrot Pathogen ‘Candidatus Liberibacter solanacearum’ Haplotype C Detected in Symptomless Potato Plants in Finland. Potato Res [Internet]. 2018 Mar 18 [cited 2019 Jan 8];61(1):31-50. Available from: http://link.springer.com/10.1007/s11540-017-9350-3

Serbina L. Systematics of jumping plant-lice ( Hemiptera : Psylloidea ): examples from the West Palaearctic and Neotropical Regions including a revision of the genus Russelliana. 2016;

Vereijssen J, Taylor NM, Barnes AM, Thompson SE, Logan DP, Butler RC, et al. First report of ’ Candidatus Liberibacter solanacearum’ in Jerusalem cherry ( Solanum pseudocapsicum) and thorn-apple (Datura stramonium ) in New Zealand . New Dis Reports. 2015 Jul 12;32:1.

Yang XB, Liu TX. Life History and Life Tables of Bactericera cockerelli ( Homoptera : Psyllidae ) on Eggplant and Bell Pepper. Environ Entomol. 2009;38(6):1661-7.

Swisher KD, Sengoda VG, Dixon J, Echegaray E, Murphy AF, Rondon SI, et al. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, solanum dulcamara, in the pacific Northwestern United States. Am J Potato Res. 2013;90(6):570-7.

Munyaneza JE. Psyllids as Vectors of Emerging Bacterial Diseases of Annual Crops. Southwest Entomol [Internet]. 2010;35(3):471-7. Available from: http://www.bioone.org/doi/abs/10.3958/059.035.0335

Munyaneza JE, Sengoda VG, Aguilar E, Bextine B, McCue KF. First Report of “ Candidatus Liberibacter solanacearum” Associated with Psyllid-Infested Tobacco in Nicaragua. Plant Dis [Internet]. 2013 Sep [cited 2019 Jan 8];97(9):1244-1244. Available from: http://apsjournals.apsnet.org/doi/10.1094/PDIS-03-13-0247-PDN

Martin NA. Host plants of the potato / tomato psyllid : a cautionary tale. 2008;16:12-6.

Cooper WR, Horton DR, Miliczky E, Wohleb CH, Waters TD. The Weed Link in Zebra Chip Epidemiology: Suitability of Non-crop Solanaceae and Convolvulaceae to Potato Psyllid and “Candidatus Liberibacter solanacearum.” Am J Potato Res. 2019;96(3):262-71.

Martínez RR, Dávila JFR, Quiroz MM, Huerta AG. Modelización espacial de ninfas de Bactericera cockerelli Sulc. en tomate de cáscara (Physalis ixocarpa Brot.) por medio de técnicas geoestadísticas. Rev Ciencias Biológicas y la Salud. 2019;XXII(1):142-52.

Gomez MR, Cesar ES, Rivera JSM, Flores JLR, Salgado JRH, Mendez JGP. Evaluación de insecticidas alternativos para el control de paratrioza (Bactericera cockerelli B.y L.) (Homoptera: Triozidae) en el cultivo de chile jalapeño (Capsicum annum L.). Rev Chapingo Ser Zo Áridas. 2008;VII(1):47-56.

Wallis RL. Ecological studies on the Potato psyllid as pest of potatoes. USDA Tech Bull. 1955;(1107):1-24.

Torres GL, Rodney Cooper W, Horton DR, Swisher KD, Garczynski SF, Munyaneza JE, et al. Horizontal transmission of “Candidatus Liberibacter solanacearum” by Bactericera cockerelli (Hemiptera: Triozidae) on Convolvulus and Ipomoea (Solanales: Convolvulaceae). PLoS One [Internet]. 2015;10(11):1-11. Available from: http://dx.doi.org/10.1371/journal.pone.0142734

Halbert S, Dixon WN. Pest Alert:Potato Psyllid (Bactericera cockerelli) (Hemiptera: Psyllidae) a Pest of Solanceae and Vector of Plant Pathogens Established in the Western USA. Florida Dep Agric Consum Serv Div Plant Ind. 2014;(November).

Nelson WR, Swisher KD, Crosslin JM, Munyaneza JE. Seasonal Dispersal of the Potato Psyllid, Bactericera cockerelli , into Potato Crops. Southwest Entomol [Internet]. 2014;39(1):177-86. Available from: http://www.bioone.org/doi/abs/10.3958/059.039.0121

Fereres A, Moreno A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 2009;141(2):158-68.

Sandanayaka WRM, Charles JG, Froud KJ. Potential use of electrical penetration graph (EPG) technology for biosecurity incursion response decision making. New Zeal Plant Prot. 2017;70(July):1-15.

Garzo E, Moreno A, Hernando S, Mariño V, Torne M, Santamaria E, et al. Electrical penetration graph technique as a tool to monitor the early stages of aphid resistance to insecticides. Pest Manag Sci. 2016;72(4):707-18.

Bonani JP, Fereres A, Garzo E, Miranda MP, Appezzato-Da-Gloria B, Lopes JRSS. Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomol Exp Appl. 2010;134(1):35-49.

Antolinez CA, Moreno A, Appezzato-da-Gloria B, Fereres A. Characterization of the electrical penetration graphs of the psyllid Bactericera trigonica on carrots. Entomol Exp Appl [Internet]. 2017 May [cited 2019 Jan 8];163(2):127-39. Available from: http://doi.wiley.com/10.1111/eea.12565

Mustafa T, Alvarez JM, Munyaneza JE. Effect of Cyantraniliprole on Probing Behavior of the Potato Psyllid (Hemiptera: Triozidae) as Measured by the Electrical Penetration Graph Technique. J Econ Entomol. 2015;108(6):2529-35.

Collar JL, Avilla C, Fereres A. New Correlations between Aphid Stylet Paths and Nonpersistent Virus Transmission. Environ Entomol. 1997;26(3):537-44.

Maluta N, Fereres A, Lopes JRS. Plant-mediated indirect effects of two viruses with different transmission modes on Bemisia tabaci feeding behavior and fitness. J Pest Sci (2004) [Internet]. 2018; Available from: https://doi.org/10.1007/s10340-018-1039-0

Boina DR, Youn Y, Folimonovac S, Stelinskia LL. Effects of pymetrozine , an antifeedant of Hemiptera , on Asian citrus psyllid , Diaphorina citri , feeding behavior , survival and transmission of Candidatus Liberibacter asiaticus Dhana. Pest Manag Sci. 2011;67(October 2010):146-55.

Guedes RNC, Cervantes FA, Backus EA, Walse SS. Substrate-mediated feeding and egg-laying by spotted wing Drosophila: waveform recognition and quantification via electropenetrography. J Pest Sci (2004) [Internet]. 2019;92(2):495-507. Available from: https://doi.org/10.1007/s10340-018-1065-y

Chen Y, Rong X, Fu Q, Li B, Meng L. Effects of biochar amendment to soils on stylet penetration activities by aphid Sitobion avenae and planthopper Laodelphax striatellus on their host plants. Pest Manag Sci. 2020;76(1):360-5.

Prager SM, Trumble JT. Psyllids: Biology, Ecology, and Management [Internet]. Sustainable Management of Arthropod Pests of Tomato. Elsevier Inc.; 2018. 163-181 p. Available from: https://doi.org/10.1016/B978-0-12-802441-6.00007-3

Hodge S, Bennett J, Merfield CN, Hofmann RW, Hodge S, Bennett J, et al. Effects of sticky trap colour , UV illumination and within-trap variation on tomato potato psyllid captures in glasshouses. New Zeal J Crop Hortic Sci [Internet]. 2018;0(0):1-15. Available from: https://doi.org/10.1080/01140671.2018.1508043

Antolínez, Moreno, Ontiveros, Pla, Plaza, Sanjuan, et al. Seasonal Abundance of Psyllid Species on Carrots and Potato Crops in Spain. Insects. 2019;10(9):287.

Manuel V, Torres P, Villa Z, Escalante FB, Manuel J, Ramírez C, et al. Evaluación , Selección y Caracterización de Genotipos de Papa Tolerantes al Síndrome de Punta Morada.Re. Rev Mex Fitopatol. 2011;29(1):15-24.

Cooper WR, Bamberg JB. Variation in Bactericera cockerelli ( Hemiptera : Triozidae ) Oviposition , Survival , and Development on Solanum bulbocastanum Germplasm. Am J Potato Res. 2014;1-6.

EPPO. Bactericera cockerelli. EPPO Bull. 2013;43(2):202-8.

Gharalari AAH, Nansen C, Lawson DS, Gilley J, Munyaneza JE, Vaughn K, et al. Knockdown Mortality , Repellency , and Residual Effects of Insecticides for Control of Adult Bactericera cockerelli ( Hemiptera : Psyllidae ). J Econ Entomol. 2009;102(1032-1038).

Echegaray ER, Vinchesi AC, Rondon SI, Alvarez JM, McKinley N. Potato Psyllid (Hemiptera: Triozidae) Response to Insecticides Under Controlled Greenhouse Conditions. J Econ Entomol. 2017;110(1):142-9.

Martinez AM, Chavarrieta JM, Morales SI, Caudillo KB, Figueroa JI, Diaz O, et al. Behavior of Tamarixia triozae females (Hymenoptera: Eulophidae) attacking Bactericera cockerelli (Hemiptera: Triozidae) and effects of three pesticides on this parasitoid. Environ Entomol [Internet]. 2015 Feb [cited 2017 Jul 14];44(1):3-11. Available from: https://academic.oup.com/ee/article-lookup/doi/10.1093/ee/nvu015

Luis J, Rodríguez-leyva E, Lomeli-flores R, Sánchez-valdez VM, Luis C, Aguirre A. Umbrales de Desarrollo de Tamarixia triozae Parasitoide del Psílido de la Papa. Southwest Entomol. 2016;41(4):1077-84.

Morales SI, Martínez AM, Viñuela E, Chavarrieta JM, Figueroa JI, Schneider MI, et al. Lethal and sublethal effects on Tamarixia triozae (Hymenoptera: Eulophidae), an ectoparasitoid of Bactericera cockerelli (Hemiptera: Triozidae), of three insecticides used on solanaceous crops. J Econ Entomol. 2018;111(3):1048-55.

Walker GP, Macdonald FH, Puketapu AJ, Fergusson HA, Connolly PG. A field trial to assess damage by Bactericera cockerelli to early potatoes at Pukekohe. New Zeal Plant Prot [Internet]. 2012 [cited 2017 Jul 14];65(Anonymous 2009):148-154. Available from: http://www.nzpps.org/journal/65/nzpp_651480.pdf

Palma-Castillo LJ, Mena-Mociño LV, Martínez AM, Pineda S, Gómez-Ramos B, Chavarrieta-Yáñez JM, et al. Diet and growth parameters of the zoophytophagous predator Engytatus varians (Hemiptera: Miridae). Biocontrol Sci Technol. 2019;29(9):901-11.

Pineda S, Hernández-Quintero O, Velázquez-Rodríguez YB, Viñuela E, Figueroa JI, Morales SI, et al. Predation by Engytatus varians (Distant) (Hemiptera: Miridae) on Bactericera cockerelli (Sulcer) (Hemiptera: Triozidae) and two Spodoptera species. Bull Entomol Res. 2019;1-8.

Calvo FJ, Torres-Ruiz A, Velazquez-Gonzalez JC, Rodrıguez-Leyva E, Lomeli-Flores JR. Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. BioControl. 2016;10.

Calvo FJ, Torres A, González EJ, Velázquez MB. The potential of Dicyphus hesperus as a biological control agent of potato psyllid and sweetpotato whitefly in tomato. Bull Entomol Res. 2018;108(6):765-72.

Xu Y, Zhang ZQ. Amblydromalus limonicus: A “new association” predatory mite against an invasive psyllid (Bactericera cockerelli) in New Zealand. Syst Appl Acarol. 2015;20(4):375-82.

Kean AM, Nielsen MC, Davidson MM, Butler RC, Vereijssen J. Host plant influences establishment and performance of Amblydromalus limonicus, a predator for Bactericera cockerelli. Pest Manag Sci. 2018;75(3):787-92.

Ramírez-Ahuja MDL, Rodríguez-Leyva E, Lomeli-Flores JR, Torres-Ruiz A, Guzmán-Franco AW. Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid , Bactericera cockerelli. Biol Control. 2017;106:9-15.

Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gomez-Flores R. Can Beauveria bassiana Bals. (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)? Biol Control. 2015;90:42-8.

Lacey LA, Liu TX, Buchman JL, Munyaneza JE, Goolsby JA, Horton DR. Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biol Control [Internet]. 2011;56(3):271-8. Available from: http://dx.doi.org/10.1016/j.biocontrol.2010.11.012

Liu JF, Zhang ZQ, Beggs JR, Wei XY. Influence of pathogenic fungi on the life history and predation rate of mites attacking a psyllid pest. Ecotoxicol Environ Saf [Internet]. 2019;183(August):109585. Available from: https://doi.org/10.1016/j.ecoenv.2019.109585

Tiénébo EO, Harrison K, Abo K, Brou YC, Pierson LS, Tamborindeguy C, et al. Mycorrhization mitigates disease caused by “Candidatus Liberibacter solanacearum” in tomato. Plants. 2019;8(11):1-11.

Granados-Echegoyen C, Pérez-Pacheco R, Bautista-Martínez N, Alonso-Hernández N, Sánchez-García JA, Martinez-Tomas SH, et al. Insecticidal Effect of Botanical Extracts on Developmental Stages of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) . Southwest Entomol [Internet]. 2015 Mar 1 [cited 2017 Jul 14];40(1):97-110. Available from: http://www.bioone.org/doi/10.3958/059.040.0108

Diaz-Montano J, Trumble JT. Behavioral Responses of the Potato Psyllid ( Hemiptera : Triozidae ) to Volatiles from Dimethyl Disulfide and Plant Essential Oils Behavioral Responses of the Potato Psyllid ( Hemiptera : Triozidae ) to Volatiles from Dimethyl Disulfide and Plant Essentia. J Insect Behav · [Internet]. 2013;26:336-51. Available from: https://www.researchgate.net/publication/257590433%0ABehavioral

Jorgensen N, Butler RC, Vereijssen J. Biorational insecticides for control of the tomato potato psyllid. New Zeal Plant Prot. 2013;66:333-40.

AM B, SE T, RC B, J V. Effect of selected biorational insecticides and conventional insecticides on transmission of Candidatus Liberibacter solanacearum by tomato potato psyllid (Bactericera cockerelli ) on potato plants - additional trial. 2014.

Lei J, Meng J, Chen IW, Cheng W, Beam AL, Islam MS, et al. Deleterious effects of electron beam irradiation on development and reproduction of tomato/potato psyllids, Bactericera cockerelli. Insect Sci. 2019;1-29.

Chuche J, Auricau-Bouvery N, Danet JL, Thiéry D. Use the insiders: could insect facultative symbionts control vector-borne plant diseases? J Pest Sci (2004). 2017;90(1):51-68.

Xie S, Lan Y, Sun C, Shao Y. Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol [Internet]. 2019;35(2):0. Available from: http://dx.doi.org/10.1007/s11274-019-2599-8

Harari AR, Sharon R, Weintraub PG. Manipulation of Insect Reproductive Systems as a Tool in Pest Control. In: Horowitz AR, Ishaaya I, editors. Advances in Insect Control and Resistance Management,. Switzerland: Springer International Publishing Switzerland; 2016. p. 93-119.

Sinno M, Bézier A, Vinale F, Giron D, Laudonia S, Garonna A Pietro, et al. Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control . Pest Manag Sci. 2020;

Zhao DX, Zhang ZC, Niu HT, Guo HF. Selective and stable elimination of endosymbionts from multiple-infected whitefly Bemisia tabaci by feeding on a cotton plant cultured in antibiotic solutions. Insect Sci. 2019;1-11.

Nieuwenhove GA Van, Oviedo AVF, Dalto YM, Perez J, Horak CI, Gastaminza GA, et al. Gamma radiation phytosanitary treatment against Trialeurodes vaporariorum ( Hemiptera : Aleyrodidae ). Florida Entomol. 2016;99(2):1-5.

Croxton SD, Stansly PA. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of huanglongbing and improve growth of new citrus plantings. Pest Manag Sci. 2014;70(2):318-23.

Merfield CN, Geary IJ, Hale RJ, Hodge S. Field evaluation of the effectiveness of mesh crop covers for the protection of potatoes from tomato potato psyllid. New Zeal J Crop Hortic Sci. 2015;43(2):123-33.

Nissinen AI, Pihlava JM, Latvala S, Jauhiainen L. Assessment of the efficiency of different control programs to reduce Trioza apicalis Först. (Triozidae: Hemiptera) feeding damage and the spread of “Candidatus Liberibacter solanacearum” on carrots (Daucus carota spp. sativus L.). Ann Appl Biol. 2020;177(2):166-77.

Tzin V, Yang X, Jing X, Zhang K, Jander G, Douglas AE. RNA interference against gut osmoregulatory genes in phloem-feeding insects. J Insect Physiol [Internet]. 2015;79:105-12. Available from: http://dx.doi.org/10.1016/j.jinsphys.2015.06.006

Bruner SC, Scaramuzza LC, Otero AR. Catálogo de los insectos que atacan a las plantas económicas de Cuba. Segunda Ed. La Habana: Academia de Ciencias de Cuba.Instituto de Zoologia; 1975. 399 p.

Ouvrard D. Psyl’list - The World Psylloidea Database. [Internet]. 2020. 2020 [cited 2020 Jun 24]. Available from: http://www.hemiptera-databases.com/psyllist

Alemán J, Baños H, Ravelo J. Diaphorina citri y la enfermedad Huanglongbing: una combinación destructiva para la producción citrícola. Rev Protección Veg. 2007;22(3):154-65.

Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, et al. Predicting species distributions for conservation decisions. Ecol Lett. 2013;16(12):1424-35.

Karuppaiah V, Sujayanad GK. Impact of climate change on population dynamics of insect pests. World J Agric Sci [Internet]. 2012;8(3):240-6. Available from: https://www.researchgate.net/publication/259240426

Wan J, Wang R, Ren Y, McKirdy S. Potential Distribution and the Risks of Bactericera cockerelli and Its Associated Plant Pathogen Candidatus Liberibacter Solanacearum for Global Potato Production. Insects. 2020;11(298):1-14.

Garrett KA, Forbes GA, Gómez L, Gonzáles MA, Gray M, Skelsey P, et al. Cambio climático y adaptación en el Altiplano bolivianoEdition: FirstChapter: Cambio climático, enfermedades de las plantas e insectos plaga. In: Jiménez E, editor. Cambio Climático y Adaptación en el Altiplano boliviano. cides-umsa; 2013. p. 71-98.

Teresani G, Hernández E, Bertolini E, Siverio F, Marroquín C, Molina J, et al. Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops. Spanish J Agric Res [Internet]. 2015 Jan 30 [cited 2019 Jan 8];13(1):e1002. Available from: http://revistas.inia.es/index.php/sjar/article/view/6551

Most read articles by the same author(s)

> >>