In vitro antagonism of Trichoderma asperellum Samuels, Lieckf. & Nirenberg (Ta13-17) against phytopathogenic fungi of Solanum lycopersicum L.

Main Article Content

Sandy Esther Celis-Perera
Felicia Amalia Moo-Koh
Arturo Reyes-Ramirez
José María Tun Suárez
Jairo Cristóbal-Alejo

Abstract

Trichoderma asperellum Samuels, Lieckf. & Nirenberg (Ta13-17) is a natural habitant of the soil that presents qualities as a biological control of fungal pathogens. It has mechanisms with antagonistic effects such as competition for space and nutrients, production of secondary metabolites, and lytic enzymes related to antibiosis and mycoparasitism. The objective was to evaluate the in vitro biocontrol capacity of the native strain T. asperellum (Ta13-17) against pathogenic fungi isolated from Solanum lycopersicum L. In dual culture in Petri dishes containing PDA, T. asperellum was confronted against five phytopathogenic fungi isolated from tomato. The percentage of inhibition of mycelial growth (ICM) and the degree of mycoparasitism were calculated. To calculate the antibiosis, ICM, sporulation inhibition and germination of conidia were determined in mycelium disks of each phytopathogen grown on PDA medium with liquid filtrate of T. asperellum added. Additionally, chitinase and glucanase production by T. asperellum was evaluated in minimal medium. A completely randomized design was used. The antagonist exhibited chitinase and glucanase activities from day three after sowing and inhibited growth of the phytopathogenic fungi at least 55 %. On the eleventh day, 100 % mycoparasitism was observed in C. lunata (ITC22) and A. alternata (ITC24); the rest of the phytopathogens showed at least 92,05 %. Antibiosis tests showed 100 % ICM for F. equiseti (ITC24) and 100% inhibition of sporulation and germination of conidia in C. cassiicola (ITC23), A. alternata (ITC23), and F. equiseti (ITC32).

Article Details

How to Cite
Celis-Perera, S. E., Moo-Koh, F. A., Reyes-Ramirez, A., Tun Suárez, J. M., & Cristóbal-Alejo, J. (2021). In vitro antagonism of Trichoderma asperellum Samuels, Lieckf. & Nirenberg (Ta13-17) against phytopathogenic fungi of Solanum lycopersicum L. Revista De Protección Vegetal, 36(3). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1154
Section
ORIGINAL ARTICLES

References

Cardozo VF, Kupper KC, Rosa MM, Gomes TM, Rossi F. Trichoderma spp. isolates with potential of phosphate solubilization and growth promotion in cherry tomato. Pesqui Agropecu Trop. 2017;47(4): 360-368.

Latz MAC, Birgit J, Collinge DB, Hans JLJ. Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecol Divers. 2018; DOI: 10.1080/17550874.2018.1534146.

Pineda IJA, Benavides SEN, Duarte TAS, Burgos RCA, Soto ACP, Pineda SCA, et al. Producción de biopreparados de Trichoderma spp: una revisión. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 2017;51(1):47-52.

Cruz TA, Rivero GD, Martínez CB, Echevarría HA, Rodríguez AT. Evaluación de la actividad antifúngica de Trichoderma asperellum Samuels ante patógenos fúngicos que afectan al cultivo de la soya (Glycine max L.). Cultivos Tropicales. 2017;38(4): 15-21.

Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav KK, Gupta VK, et al. Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India. Plant Pathol J. 2015;(31):278-289.

Zeilinger S, Gruber S, Bansal R, Mukherjee KP. Secondary metabolism in Trichoderma-Chemistry meets genomics. Fungal Biology. 2016;(30):74-90.

Schickler H, Chet I. Heterologous chitinase gene expression to improve plant defense against phytopathogenic fungi. J. Ind. Microbiol. Biotechnol. 1997;(19):196-201.

Macías de la CG, Vean F, Contreras EJC, Aguilar CN, Rodríguez HR. Cinética de crecimiento de Fusarium oxysporum cultivado en diferentes niveles de glucosa y pectina. Investig Cienc. 2016; 24(67):33-37.

Bunbury BAL, Walker AK. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control. 2018; https://doi.org/10.1016/j.biocontrol.2018.11.007

Samaniego J, Ulloa A, Herrera T. Hongos del suelo antagónicos de Phymatorichum omnivorum. Rev Mex Fitopatol. 1989;7(1):86-95.

Bell DK, Wells HD, Markham CR. “In vitro” antagonism of Trichoderma species against six fungal plant pathogens. Phytopathol Res. 1982;(72):379-382.

Ochoa MA, Rivas V, Góngora C, Tovar S, Cristóbal J, Loeza K, et al. Sistemas computarizados en epidemiología: 2-Log ver. 1.0 y su aplicación en el diseño de escalas diagramáticas logarítmicas. XXIX Simposio Nacional de Parasitología Agrícola. 2000. Puerto Vallarta, México.

Michel-Aceves AC, Otero-Sánchez MA, Rebolledo-Domínguez O, Lezama-Gutiérrez R, Ochoa-Moreno ME. Producción y efecto antagónico de quitinasas y glucanasas por Trichoderma spp., en la inhibición de Fusarium subglutinans y Fusarium oxysporum in vitro. Rev Chapingo Ser Hortic. 2005;11(2): 273-278.

Romero CT, López PP, Ramírez LM, Cuervo PJ. Modelado cinético del micoparasitismo por Trichoderma harzianum contra Cladosporium cladosporioides aislado de frutos de cacao (Theobroma cacao). Chil J Agric Anim Sci. 2015; 31(3):32-45.

Miller GL. Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959; 31(3):426-428.

Ayoubi N, Zafari D, Mirabolfathy M. Evaluation of β-1,3-glucanase and β-1,4-glucanase enzymes production in some Trichoderma species. Arch. Phytopathol. Pflanzenschutz. 2014;47(16):1929-1941.

Ramírez OJ, Trujillo SJ, Osorio EV, Jaramillo CM, Botero BL. In vitro antagonism of Trichoderma asperellum against Colletotrichum gloeosporioides, Curvularia lunata, and Fusarium oxysporum. Rev. UIS Ingenierías. 2019; 18(2):159-165 DOI: 10.18273/revuin.v18n2-2019015.

Rahman KM, Haque Z, Rasool F, Salati K, Khan U, Mohiddin FA, et al. Management of root-rot disease complex of mungbean caused by Macrophomina phaseolina and Rhizoctonia solani through soil application of Trichoderma spp. Crop Prot. 2019; doi: https://doi.org/10.1016/j.cropro.2019.01.014.

Sánchez- GBM, Espinosa HE, Villordo PE, Rodríguez GR, Mora AMA. Identificación molecular y evaluación antagónica in vitro de cepas nativas de Trichoderma spp. sobre hongos fitopatógenos de raíz en frijol (Phaseolus vulgaris l.) cv. Montcalm. Agrociencia. 2017;(51): 63-79.

De la Cruz QR, Roussos S, Rodríguez HR, Hernández CD, Aguilar CN. Growth inhibition of Colletotrichum gloeosporioides and Phytophthora capsici by native Mexican Trichoderma strains. KIJOMS. 2018;(20):1-7. https://doi.org/10.1016/j.kijoms.2018.03.002

Espinoza ACA, Gallegos MG, Hernández CFD, Ochoa FYM, Cepeda SM, Castillo RF. Antagonistas microbianos a Fusarium spp., como agente causal de pudrición de raíces y tallo en melón. Ecosistemas y recursos agropecuarios. 2019;6(16): 45-55. DOI: 10.19136/era.a6n16.1843.

Osorio HE, Hernández CFD, Rodríguez HR, Varela FSE, Estrada DB, López SJA. Actividad antagónica de Trichoderma spp. sobre Rhizoctonia solani in vitro. Investigación y Ciencia de la Universidad Autónoma de Aguascalientes. 2016;(67):5-11.

Vargas HHA, Gilchrist RE. Producción de enzimas hidrolíticas y actividad antagónica de Trichoderma asperellum sobre dos cepas de Fusarium aisladas de cultivos de tomate (Solanum lycopersicum). Rev Mex Micol. 2015;42: 9-16.

González I, Infante D, Peteira B, Martínez B, Arias Y, González N, et al. Caracterización bioquímica de aislamientos de Trichoderma spp. promisorios como agentes de control biológico. I. Expresión de actividad quitinasa. Rev Protección Veg. 2010;25(1):58-63.

González I, Infante D, Peteira B, Martínez B, Arias Y, González N, et al. Caracterización bioquímica de aislamientos de Trichoderma spp. promisorios como agentes de control biológico. II. Expresión de actividad glucanasa. Rev Protección Veg. 2011;26(1): 23-29.

Awad NE, Kassem HA, Hamed MA, El-Feky AM, Elnaggar MAA, Mahmoud K, et al. Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology. 2018; 9:1, 70-80. https://doi.org/10.1080/21501203.2017.1423126

Most read articles by the same author(s)