Functional responses of Novius punicus (Gordon) and Novius cardinalis (Mulsant) (Coleoptera: Coccinellidae) to Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae)
Main Article Content
Abstract
The functional responses of Novius punicus (Gordon) and N. cardinalis (Mulsant) (Coleoptera: Coccinellidae) were investigated using eggs and first-instar nymphs of Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae), respectively, as prey. Ten-day-old laboratory-reared adult individuals of each coccinellid species were placed individually in Petri dishes, and each one was offered a different prey density for a 24-hour period. For N. cardinalis, prey densities of 10, 20, 50, 100, and 150 first-instar nymphs of C. multicicatrices were evaluated. With N. punicus, densities of 10, 25, 50, 100, and 200 eggs of the fluted scale were evaluated. Using the proportion of prey consumed, a logistic regression was performed, which allowed the identification of the type of functional response described by the data. The random predator equation was then used to describe the functional response, using the R software v. 3.4.1. For the two species of coccinellids, a type II functional response was found, which describes a decrease in the proportion of prey consumed as the density of the prey increases. The estimated parameters of the random predator equation, attack rate (α) and handling time (in hours) (Th) were as follows: N. punicus: α = 0.12, Th = 0.64; N. cardinalis: α = 0.05; Th = 0.34. These results represent an advance in the evaluation of the potential of these predators to be used in a pest management program for C. multicicatrices.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra, siempre que se indique su autor y la primera publicación en esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
References
Holling CS. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol. 1959; 91(5):293-320. DOI: 10.4039/Ent91293-5.
Jeschke JM, Laforsch C, Diel P, Diller JGP, Horstmann M, Tollrian R. Predation. In: Mehner T, Tollrian, eds. Encyclopedia of Inland Waters (Second Edition); Elsevier. 2022: 207-221pp. https://doi.org/10.1016/B978-0-12-819166-8.00016-5
Uiterwaal SF, DeLong JP. Multiple factors, including arena size, shape the functional responses of ladybird beetles. J Appl Ecol. 2018; 55(5):2429-2438. https://doi.org/10.1111/1365-2664.13159
Hassanzadeh-Avval M, Sadeghi-Namaghi H, Fekrat L. Factors influencing functional response, handling time and searching efficiency of Anthocoris minki Dohrn (Hem.: Anthocoridae) as predator of Psyllopsis repens Loginova (Hem.: Psyllidae). Phytoparasitica. 2019; 47(3):341-350. https://doi.org/10.1007/s12600-019-00739-w
Munyaneza J, Obrycki JJ. Functional response of Coleomegilla maculata (Coleoptera: Coccinellidae) to Colorado potato beetle eggs (Coleoptera: Chrysomelidae). Biol Control. 1997; 8(3):215-224. DOI: 10.1006/bcon.1997.0509.
Fernández-Arhex V, Corley J. La respuesta funcional: Una revisión y guía experimental. Ecol Austral. 2004;14(1):83-93.
Escolástico C, Cabildo M, Claramunt R, Claramunt T. Ecología II: comunidades y ecosistemas. Madrid, España: Universidad Nacional de Educación a Distancia; 2013; 299pp. ISBN: 9788436251616.
Li Y, Rall BC, Kalinkat G. Experimental duration and predator satiation levels systematically affect functional response parameters. Oikos. 2018; 127(4):590-598. https://doi.org/10.1111/OIK.04479
Pervez A. Functional responses of coccinellid predators: an illustration of a logistic approach. J Insect Sci. 2005; 5(1):5. https://doi.org/10.1093/jis/5.1.5
Sakaki S, Sahragard A. A new method to study the functional response of Scymnus syriacus (Coleoptera: Coccinellidae) to different densities of Aphis gossypii. J Asia Pac Entomol. 2011; 14(4):459-462. https://doi.org/10.1016/j.aspen.2011.07.003.
DeLong JP. Predator ecology: Evolutionary ecology of the functional response. Oxford, U.K.: Oxford University Press. 2021; 176 pp. ISBN-13: 9780192895509.
Kondo T, Rincón DF, Pérez-Álvarez R, Vásquez Ordóñez AA, González G. Capítulo 9. Uso de depredadores como agentes de control biológico para insectos plaga. In: Cotes AM, ed. Control biológico de fitopatógenos, insectos y ácaros. Volumen 1. Agentes de control biológico. Bogotá, Colombia: Editorial Agrosavia. 2018; 486-543.
Pinchao EC, Sotelo P, González G, Kondo T. Biological data on Anovia punica Gordon (Coleoptera: Coccinellidae), a predator of Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae). Neotrop Entomol. 2017; 47(3):385-394.
González G, Kondo T. Geographical distribution and phenotypic variation of Anovia punica Gordon (Coleoptera: Coccinellidae: Noviini), a predatory ladybeetle of fluted scales (Hemiptera: Coccoidea: Monophlebidae). Insecta Mundi. 2014; 0398:1-6.
Pang H, Tang XF, Booth RG, Vandenberg N, Forrester J, McHugh J, et al. Revision of the Australian Coccinellidae (Coleoptera). Genus Novius Mulsant of tribe Noviini. Museum and Institute of Zoology, Polish Academy of Sciences. Annal Zool. 2020; 70(1):1-24.
Kondo T, Gullan P, González G. An overview of a fortuitous and efficient biological control of the Colombian fluted scale, Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae: Iceryini), on San Andres island, Colombia. Acta Zool Bulg., Suppl. 2014;6:87-93.
Kondo T, Manzano MR, Cotes AM. Biological Control in Colombia. In: van Lenteren JC, Bueno VHP, Luna MG, Colmenarez YC, eds. Biological Control in Latin America and the Caribbean: Its Rich History and Bright Future. Wallingford, Oxfordshire, U.K.: CAB International; 2020; 124-161 pp.
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria; 2017. Available from: https://www.R-project.org/ [Accessed 02.06.2021]
Pritchard DW, Paterson RA, Bovy HC, Barrios O'Neill D. Frair: an R package for fitting and comparing consumer functional responses. Methods Ecol Evol. 2017; 8(11):1528-1534.
Paterson RA, Dick JT, Pritchard D, Ennis M, Hatcher MJ, Dunn AM. Predicting invasive species impacts: a community module functional response approach reveals context dependencies. J Anim Ecol. 2015; 84(2):453-463. https://doi.org/10.1111/1365-2656.12292.
Juliano SA. Non-linear curve fitting: predation and functional response curves. In: Scheiner S, Gurevitch, J, eds. Design and Analysis of Ecological Experiments. Oxford: Oxford University Press. 2001; 178-196.
Rogers D. Random search and insect population models. J Anim Ecol. 1972; 1:369-383. https://doi.org/10.2307/3474
Uiterwaal SF, Lagerstrom IT, Lyon SR, DeLong JP. Data paper: FoRAGE (Functional Responses from Around the Globe in all Ecosystems) database: a compilation of functional responses for consumers and parasitoids. BioRxiv.2018. https://doi.org/10.1101/503334
De Bortoli SA, Gravena AR, Vacari AM, De Laurentis VL, De Bortoli CP. Resposta funcional da joaninha Cryptolaemus predando cochonilha branca em diferentes temperaturas e substratos vegetais. Rev Caatinga. 2014; 27(3):63-71.
Seko T, Miura K. Functional response of the lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) on the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl Entomol Zool. 2008; 43(3):341-345.
Islam Y, Shah FM, Shah MA, Khan MM, Rasheed MA, Rehman SU, et al. Temperature-dependent functional response of Harmonia axyridis (Coleoptera: Coccinellidae) on the eggs of Spodoptera litura (Lepidoptera: Noctuidae) in laboratory. Insects. 2020; 11(9):583. https://doi.org/10.3390/INSECTS11090583
Messina FJ, Hanks JB. Host plant alters the shape of the functional response of an aphid predator (Coleoptera: Coccinellidae). Environ Entomol. 1998; 27(5):1196-1202. DOI: 10.1093/ee/27.5.1196.