Spatial modeling of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Solanum tuberosum L.

Main Article Content

Lázaro Cuellar Yanes
María de los A Martínez Rivero
Leticia Duarte Martínez
Heyker L Baños Díaz
Ileana Miranda Cabrera

Abstract

To determine the spatial disposition pattern of Myzus persicae Sulze and predict the evolution of its dispersal in a potato crop (Solanum tuberosum L.), an area of 0.5 ha of the variety 'Gazelle' was monitored in the experimental fields of the National Institute of Agricultural Sciences (INCA), Mayabeque, Cuba. Weekly samplings were carried out during the vegetative growth of the crop. In each sampling, 40 geo-referenced fixed plants were examined and the aphids present on each plant were counted, and samples were collected for identification. The aphid population density per sampling was calculated, and the exploratory analysis of this variable was carried out. The spatial disposition of aphids was determined according to indices for sampling units that were not necessarily contiguous. The geostatistical data analysis was carried out by elaborating population density maps using the ordinary Kriging technique. M. persicae proved to be the predominant aphid in the crop. The disposition indices used indicate an aggregated population distribution on most of the sampling dates. Field location, size and density of M. persicae aggregates in the potato crop were highly variable. Kriging predicts the existence of areas of unstable aphid density, and it is estimated that the population will invade a large part of the field. Due to the conditions of this agro-ecosystem, this aphid species in potato follows a trend in which aggregates emerge at the edges and move toward the central zone of the crop.

Article Details

How to Cite
Cuellar Yanes, L. ., Martínez Rivero, M. de los A. ., Duarte Martínez, L. ., Baños Díaz, H. L. ., & Miranda Cabrera, I. . (2023). Spatial modeling of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Solanum tuberosum L. Revista De Protección Vegetal, 38, https://cu-id.com/2247/v38e07. Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1286
Section
ORIGINAL ARTICLES

References

Roberqui MM, Mompié EJ. Evaluación del rendimiento en papa (Solanum tuberosum, L.) a partir del comportamiento de las temperaturas. Cultivos Tropicales [Internet]. 2015;1(36):93-7. Recuperado: https://ediciones.inca.edu.cu/index.php/ediciones/article/view/945

Van Emden HF, Harrington R. Aphids as crop pest [Internet]. Vol. 5 Cambridge, USA: CABI Digital Library; 2007 [citado. Recuperado: http://www.cabidigitallibrary.org/doi/book/10.1079/9780851998190.0000

Xu Y, Gray SM. Aphids and their transmitted potato viruses: A continuous challenge in potato crops. J Integr Agric. 2020;19(2):367-75. DOI: 10.1016/S2095-3119(19)62842-X

Ferguson AW, Klukowski Z, Walczak B, Clark SJ, Mugglestone MA, Perry JN. Spatial distribution of pest insects in oilseed rape: Implications for integrated pest management. Agric Ecosyst Environ. 2003;95(2-3):509-21. DOI: 10.1016/S0167-8809(02)00200-1

Fievet V, Dedryver CA, Plantegenest M, Simon JC, Outreman Y. Aphid colony turn-over influences the spatial distribution of the grain aphid Sitobion avenae over the wheat growing season. Agric For Entomol. 2007;9(2):125-34. DOI: 10.1111/j.1461-9563.2007.00331.x

Ledo A, Condés S, Montes F. Revisión de índices de distribución espacial usados en inventarios forestales y su aplicación en bosques tropicales. Revista Peruana de Biologia. 2012;19(1):113-24. DOI: 10.15381/rpb.v19i1.799

Fisher MA, Thornton HG, Mackenzie WA. The accuracy of the plating method of estimating the density of bacterial populations with particular reference to the use of thorntons agar medium with soil samples. Ann Appl Biol. 1922;9(3-4):325-59. DOI: 10.1111/j.1744-7348.1922.tb05962.x

David FN, Moore PG. Notes on contagious distributions in plant populations. Ann Bot. 1954;18(1):47-53. DOI: 10.1093/oxfordjournals.aob.a083381

Morisita M. Measuring of the dispersion of individuals and analysis of the distributional patterns. Mem Fac Sci Kyushu Univ Ser E. 1959;2(4):22.

Lloyd M. Mean Crowding. J Anim Ecol. 1967;36(1):1. DOI: 10.2307/3012

Gallardo A. Geostadística. Ecosistemas. 2006;15(3):48-58.

Sharma S, Sood AK, Ghongade DS. Assessment of losses inflicted by the aphid, Myzus persicae (Sulzer) to sweet pepper under protected environment in northwestern Indian Himalayan region. Phytoparasitica. 2022;50(1):51-62. DOI: 10.1007/s12600-021-00951-7

He Y, Jiang W, Ding W, Chen W, Zhao D. Effects of PVY-Infected Tobacco Plants on the Adaptation of Myzus persicae (Hemiptera: Aphididae). Insects. 2022;13(12):1-12. DOI: 10.3390/insects13121120

Walker SR. Incremento poblacional de Myzus persicae (Sulzer) sobre tres crucíferas hortícolas en laboratorio. Agric Técnica. 2003;63(1):10-4. DOI: 10.4067/S0365-28072003000100002

Musa F, Krasniqi D, Musa S. Aphid complex associated with potato in agro-climatic conditions of Kosovo. Agron Res. 2020;18(1):206-15.

Giordanengo P, Vincent C, Alyokhin A, editor. Insect Pests of Potato. Oxford, UK: Elsevier Inc; 2013.

Pinheiro PV, Wilson JR, Xu Y, Zheng Y, Rebelo AR, Fattah-Hosseini S, et al. Plant viruses transmitted in two different modes produce differing effects on small RNA-mediated processes in their aphid vector. Phytobiomes J. 2019;3(1):71-81. DOI: 10.1094/PBIOMES-10-18-0045-R

Alvarez AE, Garzo E, Verbeek M, Vosman B, Dicke M, Tjallingii WF. Infection of potato plants with potato leafroll virus changes attraction and feeding behavior of Myzus persicae. Entomologia Experimentalis et Applicata. 2007;125(2):135-44. DOI: 10.1111/j.1570-7458.2007.00607.x

Srinivasan R, Alvarez JM. Effect of Mixed Viral Infections (Potato Virus Y-Potato Leafroll Virus) on Biology and Preference of Vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J Econ Entomol. 2007;100(3):646-55. DOI: 10.1093/jee/100.3.646

Kolychikhina MS, Beloshapkina OO, Phiri C. Change in potato productivity under the impact of viral diseases. Conf Ser: Earth Environ Sci. 2021;663:012035. DOI: 10.1088/1755-1315/663/1/012035

Verma SC, Negi S. Spatial distribution of green peach aphid, Myzus persicae Sulzer and its parasitoid, Aphelinus asychis Walker in bell pepper under polyhouse conditions. J Entomol Zool Stud. 2018;6(3):776-80.

Taylor LR. Assessing and interpreting the spatial distributions of insect populations. Annu Rev Entomol. 1984;29:321-58. DOI: 10.1146/annurev.en.29.010184.001541

Cadahia D. Repartición espacial de las poblaciones en Entomología aplicada. Bol Serv Plagas. 1977;3(1):219-33.

Elliott N, Kieckhefer RW. Response by coccinellids to spatial variation in cereal aphid density. Popul Ecol. 2000;42(1):81-90. DOI: 10.1007/s101440050012

Nilsen C, Paige J, Warner O, Mayhew B, Sutley R, Lam M, et al. Social aggregation in pea aphids: Experiment and random walk modeling. PLoS One. 2013;8(12):e83343. DOI: 10.1371/journal.pone.0083343

Narayandas GK, Alyokhin AV. Interplant movement of potato aphid (Homoptera: Aphididae) in response to environmental stimuli. Environ Entomol. 2006;35(3):733-9. DOI: 10.1603/0046-225X-35.3.733

Southwood TRE, Henderson PA, editor. Ecological Methods. 3.a ed. Oxford, UK: Blackwell Science Ltd Editorial Offices; 2000.

González Andújar J, Ocete Rubio R, López Martínez M, Ramírez Dávila J. Modelización y mapeo de la distribución espacial de las ninfas del mosquito verde “Jacobiasca lybica” (Bergevin & Zanon) (Hemiptera, Cicadellidae) en viñedo. Boletín Sanid Veg Plagas. 2005;31(1):119-32.

Codod CB, Severns PM, Sparks AN, Srinivasan R, Kemerait RC, Dutta B. Characterization of the spatial distribution of the whitefly-transmitted virus complex in yellow squash fields in Southern Georgia, USA. Front Agron. 2022;4:1-21. DOI: 10.3389/fagro.2022.930388

Most read articles by the same author(s)

> >>