Sweet potato viral disease and viral reversion, two remarkable outputs of Ipomoea batatas-virus interaction

Main Article Content

José Efraín González Ramírez
Vaniert Ventura Chávez
Alfredo Morales Rodriguez
Katia Ojito-Ramos
Orelvis Portal

Abstract

Sweet potato (Ipomoea batatas (L.) Lam.), a perennial herbaceous plant within the family Convolvulaceae, is the world’s seventh most important food crop, after wheat (Triticum L.), rice (Oriza sativa L.), maize (Zea mayz L.), potato (Solanum tuberosum L.), barley (Hordeum vulgare L.), and cassava (Manihot esculenta Crantz). More than 133 x 106 t of sweet potatoes are produced globally per year, more than 95% in developing countries. Sweet potato, being a vegetatively propagated crop, can lead to the accumulation of systemic pathogens, especially viruses. More than 30 viruses, assigned to 9 families, have been identified to infect the crop, Bromoviridae (1 virus), Bunyaviridae (1), Caulimoviridae (3), Closteroviridae (1), Comoviridae (1), Flexiviridae (1), Geminiviridae (15), Luteoviridae (1), and Potyviridae (9). Entrance of a virus to plant tissue does not always means the development of a disease. Its development in plants is the result of the interaction of at least four factors (disease tetrahedron) : the pathogenic agent, the host, the transmission mechanisms that include the action of vectors, and a fourth factor involving the environment effect. The latter includes interaction with biotic and abiotic elements. Therefore, in the development of the disease, these factors will determine the possible interaction with other viruses and the environment. In fact, a disease is not the most common result of plant-virus interaction. In this review, we intend to show how the interaction between viruses and between them and the environment determine two particularly interesting phenomena that characterize the sweet potato-virus relationship (i.e., Sweet Potato Virus Disease (SPVD) and Viral Reversion). Knowledge of these relationships is a cornerstone in the development of genetic improvement programs and seed production in sweet potato cultivation.

Article Details

How to Cite
González Ramírez, J. E. ., Ventura Chávez, V. ., Morales Rodriguez, A. ., Ojito-Ramos, K. ., & Portal, O. . (2023). Sweet potato viral disease and viral reversion, two remarkable outputs of Ipomoea batatas-virus interaction. Revista De Protección Vegetal, 38, https://cu-id.com/2247/v38e04. Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1295
Section
REVIEW ARTICLES

References

de Albuquerque TMR, Sampaio KB, de Souza EL. Sweet potato roots: unrevealing an old food as a source of health promoting bioactive compounds-a review. Trends Food Sci Technol. 2019; 85:277-86.

FAOSTAT. fecha de consulta: 07/23/2021; disponible en: http://faostat.fao.org/ (2021)

MINAG. Lista Oficial de Variedades Comerciales 2022-2023. GOC-2017-406-018. La Habana: AgroInfo; 2022. 47 p.

Megahed AA, El-Dougdoug NK, Bondok AM, Masoud HM. Monitoring of co-infection virus and virus-like naturally in sweet pepper plant. Arch. Phytopathol. Plant Prot. 2019; 52:333-55.

Gallo Y, Sierra A, Donaire L, Aranda M, Gutiérrez PA, Marín M. Coinfección natural de virus de ARN en cultivos de papa (Solanum tuberosum subsp. andigena) en Antioquia (Colombia). Acta Biol. Colomb. 2019; 24:546-60.

Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. En: Carr JP, Roossinck MJ, eds. Advances in Virus Research. Elsevier: Amsterdam, The Netherlands. 2020:87-131.

Gibbs AJ, Hajizadeh M, Ohshima K, Jones RAC. The potyviruses: an evolutionary synthesis is emerging. Viruses. 2020; 12:132.

García-Cano E, Resende RO, Fernández-Muñoz R, Moriones E. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology. 2016; 96:1263-9.

Ayo-John EI, Akangbe BO, Salako SA, Otusanya MO, Odedara OO. Virus occurrence in yam (Dioscorea spp.) tubers and field leaf samples in a humid transition zone of Nigeria. Niger. J. Agri., Food and Environ. 2017; 13:73-7.

Pechinger K, Chooi KM, MacDiarmid RM, Harper SJ, Ziebell H. A new era for mild strain cross-protection. Viruses. 2019; 11:670.

Moreno AB, López-Moya JJ. When viruses play team sports: mixed infections in plants. Phytopathology. 2020; 110:29-48.

Jones RAC. Global plant virus disease pandemics and epidemics. Plants. 2021; 10:233.

Barkessa MKE. A review on sweet potato (Ipomea batatas) viruses and associated diseases. Int. J. Agric. Res. 2018; 5:1-10.

Zhang K, Lu H, Wan C, Tang D, Zhao Y, Luo K, et al. The spread and transmission of Sweet Potato Virus Disease (SPVD) and its effect on the gene expression profile in sweet potato. Plants. 2020; 9:492.

Adikini S, Mukasa SB, Mwanga ROM, Gibson RW. Effects of sweet potato feathery mottle virus and sweet potato chlorotic stunt virus on the yield of sweetpotato in Uganda. J. Phytopathol. 2016; 164: 242-54.

Ssamula A, Okiror A, Avrahami-Moyal L, Tam Y, Gaba V, Gibson RW, et al. Factors influencing reversion from virus infection in sweetpotato. Ann. Appl. Biol. 2020; 176:109-21.

Varela-Benavides I, Trejos-Araya C. Detection of viruses in sweet potato (Ipomoea batatas L.) using qPCR. Agron. Mesoam. 2020; 31(1):223-35.

Cuellar WJ, Galvez M, Fuentes S, Tugume J, Kreuze J. Synergistic interactions of begomoviruses with sweet potato chlorotic stunt virus (genus Crinivirus) in sweet potato (Ipomoea batatas L.). Mol. Plant Pathol. 2015; 16(5):459-71.

van Munster M. Impact of abiotic stresses on plant virus transmission by aphids. Viruses. 2020; 12:216.

Li F, Zhang C, Li Y, Wu G, Hou X, Zhou X, et al. Beclin1 restricts RNA virus infection in plants through suppression and degradation of the viral polymerase. Nat. Commun. 2018; 9:1268.

Baebler Š, Coll A, Gruden K. Plant molecular responses to potato virus Y: A continuum of outcomes from sensitivity and tolerance to resistance. Viruses. 2020; 12:217.

Tibiri EB, Somé K, Pita JS, Tiendrébéogo F, Bangratz M, et al. Effects of sweet potato feathery mottle virus, sweet potato chlorotic stunt virus and their coinfection on sweet potato yield in Western Burkina Faso. Open Agric. 2019; 4:758-766.

Roullier C, Duputie´ A, Wennekes P, Benoit L, Fernandez-Bringas VM, Rossel G. Disentangling the origins of cultivated sweet potato (Ipomoea batatas (L.) Lam.). PLoS ONE. 2013; 8(5):e62707.

MINAG. Instructivo Técnico para la Producción de Semillas de Viandas. La Habana: AgroInfo; 2012. 107 p.

Loebenstein G. Control of sweet potato virus diseases. En: Loebenstein, G, Katis NI, eds. Advances in Virus Research. Elsevier: Amsterdam, The Netherlands. 2015:33-45.

Abidin PE, Akansake DA, Asare KB, Acheremu K, Carey EE. Efect of sources of Sweetpotato planting material for quality vine and root yield. Open Agric. 2017; 4(2):244-9.

Ogero KO, Kreuze JF, McEwan MA, Luambano ND, Bachwenkizi H, Garrett KA, et al. Efficiency of insect-proof net tunnels in reducing virus-related seed degeneration in sweet potato. Plant Pathol. 2019; 68(8):1472-80.

Almekinders C, Walsh S, Jacobsen KS, Andrade-Piedra JL, McEwan MA, de Haan S, et al. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Secur. 2019; 11:23-42.

Clark CA, Davis JA, Fuentes S, Abad JA, Cuellar WJ, Kreuze JF, et al. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 2012; 96(2):168-85.

Delgado-Paredes GE, Vásquez-Díaz C, Esquerre-Ibañez B, Bazán-Sernaqué, Rojas-Idrogo C. In vitro tissue culture in plants propagation and germplasm conservation of economically important species in Peru. Sci. Agropecur. 2021; 12(3):337-49.

Yeonhwa J, Sang-Min K, Hoseong C, Jung-Wook Y, Bong-Choon L, Won-Kyong C. Sweet potato viromes in eight different geographical regions in Korea and two different cultivars. Sci. Rep. 2020; 10:2588.

Gibson RW, Kreuze JF. Degeneration in sweet potato due to viruses, virus-cleaned planting material and reversion: a review. Plant Pathol. 2015; 64:1-15.

Xu Y, Ghanim M, Liu Y. Editorial: Mixed infections of plant viruses in nature and the impact on agriculture. Front. Microbiol. 2022; 13:922607.

Islam W, Noman A, Naveed H, Alamri SA, Hashem M, Huang Z, et al. Plant-insect vector-virus interactions under environmental change. Sci. Total Environ. 2020; 701:135044.

Jeger MJ. The epidemiology of plant virus disease: towards a new synthesis. Plants. 2020; 9:1768.

Tsai W‑A, Brosnan CA, Mitter N, Dietzgen RG. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. Stress Biol. 2022; 2:37.

Villamor DEV, Ho T, Al Rwahnih M, Martin RR, Tzanetakis IE. High throughput sequencing for plant virus detection and discovery. Phytopathology. 2019; 109:716-25.

Redinbaugh MG, Stewart LR. Maize lethal necrosis: an emerging, synergistic viral disease. Annu. Rev. Virol. 2018; 5:301-22.

Syller J. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol. Plant Pathol. 2012; 13:204-16.

Wang Y, Qin Y, Wang S, Zhang D, Tian Y, Zhao F, et al. Species and genetic variability of sweetpotato viruses in China. Phytopathol. Res. 2021; 3:20.

Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J. ICTV virus taxonomy profiles: Geminiviridae. J. Gen. Virol. 2017; 98(2):131-3.

Moury B, Desbiez C. Host range evolution of potyviruses: A global phylogenetic analysis. Viruses. 2020; 12:111.

Karyeija RF, Kreuze JF, Gibson RW, Valkonen JPT. Synergistic interactions of a Potyvirus and a phloem-limited Crinivirus in sweet potato plants. Virology. 2000; 269:26-36.

Buko DH, Gedebo A, Spetz C, Hvoslef-Eide AK. An update of sweet potato viral disease incidence and spread in Ethiopia. Afr. J. Agric. Res. 2020; 16(8):1116-26.

Untiveros M, Quispe D, Kreuze J. Analysis of complete genomic sequences of isolates of the sweet potato feathery mottle virus strains C and EA: Molecular evidence for two distinct potyvirus species and two P1 protein domains. Arch. Virol. 2011; 155:2059-63.

Loebenstein G. Sweet potato, a research neglected Important food crop, regarding virus research and propagation systems: A review. Austin J. Plant Biol. 2016; 2(1):1012-25.

Kiemo FW, Salamon P, Jewehan A, Tóth Z, Szabó Z. Detection and elimination of viruses infecting sweet potatoes in Hungary. Plant Pathol. 2022; 00:1-9.

Dolja VV, Kreuze JF, Valkonen JPT. Comparative and functional genomics of closteroviruses. Virus Res. 2006; 117:38-51.

Cuellar WJ, Kreuze JF, Rajamäki ML, Cruzado KR, Untiveros M, Valkonen JPT. Elimination of antiviral defense by viral RNase III. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:10354-8.

Kreuze J, Cuellar WJ y Low JW. Challenge of Virus Disease Threats to Ensuring Sustained Uptake of Vitamin-A-Rich Sweetpotato in Africa. En P. Scott et al. (eds.), Plant Pathology in the 21st Century 10. Elsevier: Amsterdam, The Netherlands. 2021; 73-93.

Untiveros M, Fuentes S, Salazar LF. Synergistic interaction of Sweet potato chlorotic stunt virus (Crinivirus) with carla-, cucumo-, ipomo-, and potyviruses infecting sweet potato. Plant Dis. 2007; 91:669-76.

Wokoracha G, Otima G, Njugunac J, Edemaa H, Njung'ec V, Machukac EM. Genomic analysis of Sweet potato feathery mottle virus from East Africa. Physiol. Mol. Plant Pathol. 2020; 110:101473.

Andreason SA, Olaniyi OG, Gilliard AC, Wadl PA, Williams LH, Jackson DM, et al. Large-scale seedling grow-out experiments do not support seed transmission of sweet potato leaf curl virus in sweet potato. Plants. 2021; 10:139.

Mukasa SB, Tairo, F., Kullaya A, Rubaihayo PR, Valkonen JPT. Coat protein sequence analysis reveals occurrence of new strains of sweet potato feathery mottle virus in Uganda and Tanzania. Virus Genes. 2006; 27:49-56.

Kreuze JF, Savenkov EI, Cuella W, Li X, Valkonen JPT. Viral class 1 RNase III involved in suppression of RNA silencing. J. Virol. 2005; 79:7227-38.

Cuellar, WJ, Tairo F, Kreuze JF, Valkonen JPT. Analysis of gene content in sweet potato chlorotic stunt virus RNA1 reveals the presence of the p22 RNA silencing suppressor in only a few isolates: Implications for viral evolution and synergism. J. Gen. Virol. 2008; 89:573-82.

Kreuze JF, Karyeija RF, Gibson RW, Valkonen JPT. Comparisons of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch. Virol. 2000; 145:567-74.

Kreuze JF, Perez A, Gargurevich MG, Cuellar WJ. Badnaviruses of sweet potato: symptomless coinhabitants on a global scale. Front. Plant Sci. 2020; 11:313.

McGregor CE, Miano DW, LaBonte DR, Hoy M, Clark CA, Rosa GJM. Differential gene expression of resistant and susceptible sweetpotato plants after infection with the causal agents of sweet potato virus disease. J. Am. Soc. Hortic. Sci. 2009; 134:658-66.

Mbewe W, Mtonga A, Chiipanthenga M, Masamba K, Chitedze G, Pamkomera P, et al. Incidence and distribution of Sweetpotato viruses and their implication on sweetpotato seed system in Malawi. J. Plant Pathol. 2021; 103:961-8.

Aritua V, Bua B, Barg E, Vetten HJ, Adipala E, Gibson RW. Incidence of five viruses infecting sweetpotatoes in Uganda; the first evidence of Sweet potato caulimo-like virus in Africa. Plant Pathol. 2006; 56:324-31

Mohammed IU, Ghosh S, Maruth, MN. Host and virus effects on reversion in cassava affected by cassava brown streak disease. Plant Pathol. 2016; 65:593-600.

Ghoshal B, Sanfaçon H. Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology. 2015; 479:167-79.

Paudel DB, Sanfaçon H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018; 9:1575.

Chellappan P, Vanitharani R, Ogbe F, Fauquet CM. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. 2005; 138(4):1828-41.

Dor das C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008; 28:33-46.

Most read articles by the same author(s)