Tomato leaf miner: oviposition pattern and larval survival on three tomato cultivars

Main Article Content

María de los Ángeles Martínez Rivero
Vanda Helena Paes Bueno
Alisson Oliveira
Wilson Roberto Maluf

Abstract

Understanding the behaviour and biological parameters of insect pests helps enhance the benefits of resistant cultivars within integrate management programs. In semi-controlled conditions, the non-preference effect measured by oviposition pattern, as well as antibiosis effect measured by larval survival of the pest Tuta absoluta (Meyrick) were assessed on three tomato cultivars, ‘Vyta’ from Cuba and ‘Santa Clara’ and ‘TOM 687’ from Brazil. Adult females laid eggs on plants during 96 h, and the larvae were allowed to feed on the tomato leaves for ten days. The number of eggs and active larvae on each plant stratum (i.e., upper, middle, and lower) were counted in the treatments with combined or non-combined tomato cultivars. Based on results, T. absoluta preferred the upper and middle strata of the plants to lay the highest number of eggs, mainly when the cultivars were combined. Also, higher numbers of active larvae used those strata for feeding. Cuban cultivar ‘Vyta’ had a similar response to Brazilian cultivar ‘TOM 687’ in relation to the parameters evaluated. However, this cultivar was less preferred by TLM females for oviposition when it was in combination with Santa Clara and TOM 687. Cultivar combination influenced only TOM 687 and Santa Clara, which suggests that Vyta has characteristics that confer it some level of resistance against this important pest. This insect behaviour is an indicator to be taken into account when sampling T. absoluta. Tomato cultivar ‘Vyta’ could be considered an alternative to mitigate the impact of T. absoluta damages in Cuba.

Article Details

How to Cite
1.
Duarte Martínez L, Martínez Rivero M de los Ángeles, Paes Bueno VH, Oliveira A, Maluf WR. Tomato leaf miner: oviposition pattern and larval survival on three tomato cultivars. Rev. Protección Veg. [Internet]. 2024 Sep. 12 [cited 2025 Sep. 28];39:https://cu-id.com/2247/v39e15. Available from: https://revistas.censa.edu.cu/index.php/RPV/article/view/1379
Section
ORIGINAL ARTICLES

References

Bueno VHP, van Lenteren JC, Calixto LAM Jr, Montes F, Silva D, Santiago LD, Pérez LM. New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. J Appl Entomol. 2013; 137:29-34. https:// doi.org/10.1111/jen.12017

Biondi A, Guedes RNC, Wan FH, Desneux N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annual Review of Entomology. 2018; 63:239-258.

Bawin T, Dujeu D, De Backer L, Francis F, Verheggen FJ. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. The Canadian Entomologist. 2016; 148:434-442.

CABI Head Office, Wallingford, UK. 2016. Distribution Maps of Plant Pests, Tuta absoluta. [Distribution map]. Map 723 (1st revision). Consulted: 29/3/2018 available online: http://www.cabi.org/isc/datasheet/49260

Verheggen F, Bertin R. First record of Tuta absoluta in Haiti. Entomologia Generalis. 2019; 38:349-353. https://doi.org/10.1127/entomologia/2019/0778

Giorgini M, Guerrieri E, Cascone P, Gontijo L. Current Strategies and Future Outlook for Managing the Neotropical Tomato Pest Tuta absoluta (Meyrick) in the Mediterranean Basin. Neotrop Entomol. 2018. https://doi.org/10.1007/s13744-018-0636-1

Dias DM, Resende JT, Zeist AR, Gabriel A, Santos MH, Vilela NC. Resistance of processing tomato genotypes to leafminer (Tuta absoluta). Horticultura Brasileira 2019; 37(1): 40-46doi:10.1590/s0102-053620190106

Rakha M, Zekeya N, Sevgan S, Musembi M, Ramasamy S, Hanson P. Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breeding. 2017; 136(4):562-568doi:10.1111/pbr.12503

Maciel GM, Marquez GR, Silva EC, Andaló V, Belloti IF. Tomato genotypes with determinate growth and high acylsugar content presenting resistance to spider mite. Crop Breeding and Applied Biotechnology. 2018;18:1-8.

Ghosh P, Jagadish KS, Purushothama MG, Hanson P, Rakha M, Sotelo-Cardona P, Vaddi S, Srinivasan R. Performance of Wild Tomato Accessions and Elucidation of Resistance against Invasive Pest Phthorimaea absoluta Damage under Tropical Conditions. Horticulturae. 2023; 9:143. https://doi.org/ 10.3390/horticulturae9020143

Resende NCV, Silva AA, Maluf WR, Resende JTV, Zeist AR, Gabriel A. Selection of tomato lines and populations for fruit shape and resistance to tomato leafminer. Horticultura Brasileira. 2020; 38:117-125. DOI - http://doi.org/10.1590/S0102-053620200202

Isah T. Stress and defense responses in plant secondary metabolites production. Biological Research. 2019; 52(39):1-25. doi:10.1186/s40659-019-0246-3

Weinblum N, Cnaani A, Yaakov B, Sadeh A, Avraham L, Opatovsky I, Tzin V. Tomato Cultivars Resistant or Susceptible to Spider Mites Differ in Their Biosynthesis and Metabolic Profile of the Monoterpenoid Pathway. Front. Plant Sci. 2021; 12:630155. doi: 10.3389/fpls.2021.630155

Leite GLD. Resistencia de tomates a pragas. Unimontes Cientifica. Montes Claros. 2004; 2(6):130-140

Thomazini AP, Vendramim JD, Brunherotto R, Lopes MT. Efeito de Genótipos de Tomateiro sobre a Biologia e Oviposição de Tuta absoluta (Meyrick) (Lep.:Gelechiidae). Neotropical Entomology. 2001; 30(2):283-288.

Aslan B, Birgücü AK. Population parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on wild tomato species. Plant Protect. Sci. 2022; 58:315-325.

Duarte L, Martínez MA, Bueno VHP. Biology and populational parameters of Tuta absoluta (Meyrick) under laboratory conditions. Rev. Protección Veg. 2015; 30(1):19-29. Cu-ID: https://cu-id.com/2247/ojs559.

Oliveira CM, Júnior VCA, Maluf WR, Neiva IP, Maciel GM. Resistência de linhagens de tomateiro à traça Tuta absoluta, relacionada a aleloquímicos e à densidade de tricomas. Ciênc. agrotec. 2012; 36(1):45-52.

Maciel GM, Maluf WR, Silva VF, Gonçalves-Neto AC, Gomes LAA. Híbridos pré-comerciais resistentes a Tuta absoluta obtidos de linhagem de tomateiro rica em acilaçúcares. Horticultura Brasilera. 2011; 29:151-156.

Alvares M, Moya C, Florido M, Plana D. Resultados de la mejora genética del tomate (Lycopersicon esculentum Mill.) y su incidencia en la producción hortícola de cuba. Cultivos Tropicales. 2003; 24(2):63-70. Cu-ID: https://cu-id.com/2050/ojs600.

Dueñas F, Martínez Y, Álvarez M, Moya C, Peteira B, Arias Y, Diez MJ, Hanson O. Caracterizacion agromorfologica y evaluacion de la resistencia al TYLCV en nuevos genotipos de tomate (Solanum lycopersicum L.) como apoyo al programa de mejoramiento genêtico de la hortaliza para la enfermedad. Cultivos Tropicales. 2008 ; 29(1):53-60. Cu-ID: https://cu-id.com/2050/ojs264.

Gómez O, Piñón M, Martínez Y, Quiñónes M, Fonseca D, Laterrot H. Breeding for resistence to begomovirus in tropic-adapted tomato genotypes. Plant Breeding. 2004 ; 123(3):275-279.

Dueñas-Hurtado F, Álvarez M, Moya C, Martínez-Zubiaur Y. Identificación del gen Ty.3, de resistencia a begomovirus, en accesiones de Solanum lycopersicum L. Cultivos Tropicales. 2011; 32(2):136-142.

Pratissoli D, Parra JRP, Fernandes A, Oliveira RC, Zago HB, Pereira FF. Patrón de ovoposición de la polilla del tomate, Tuta absoluta, en tomates bajo diferentes densidades de poblaciones adultas en invernadero. Agro-Ciencia. 2003; 19(1):11-15.

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.R-project.org/

Mahmoud AMA, Ebadah IMA, Moawad SS, Mohmoud YA, EL-Hameid AR, Sadek HE. Tuta absoluta (Meyrick) resistance in tomato (Solanum lycopersicum L.) accessions and species. International Journal of Pest Management. 2022. https://doi.org/10.1080/09670874.2022.2055195

Gonçalves-Neto AC, Silva VF, Maluf WR, Maciel GM, Nizio DAC, Gomes LAA, Azevedo SM. Resistência à traça-do-tomateiro em plantas com altos teores de acilaçúcares nas folhas. Horticultura Brasileira. 2010;28: 203-208.

Vucetic A, Dahlin I, Petrovic-Obradovic O, Glinwood R, Webster B, Ninkovic V. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signaling & Behavior. 2014; 9:e29517; PMID: 24927115. http://dx.doi.org/10.416.

Glinwood R, Ninkovic V, Jan P. Chemical interaction between undamaged plants: Effects on herbivores and natural enemies. Phytochemistry. 2011; 72(13):1683-1689.

Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. Plants. 2022; 11:2566. https://doi.org/10.3390/ plants11192566

D’Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale, A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC Plant Biol. 2021; 21:358. https://doi.org/10.1186/s12870-021-03129-9

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.