Development and prey preference of Macrolophus basicornis (Hemiptera: Miridae) feeding on Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae)

Main Article Content

Heyker L. Baños-Díaz
María de los Ángeles Martinez-Rivero

Abstract

Biological characteristics, consumption, and prey preference of the predatory bug Macrolophus basicornis preying on Myzus persicae or Macrosiphum euphorbiae on tomato plants were studied. Incubation period of the predator´s eggs was of 8 days and its nymphs presented five instars regardless of the prey consumed. All the nymphal stages showed a similar development time with the exception of the 2nd instar. There were no significant differences between the size and weight of M. basicornis nymphs feeding on M. persicae or on M. euphorbiae. The average rate of aphid consumption revealed significant differences between the 5th instar nymph and the females of the predator when they had no option to choose the prey. In addition, the fifth nymphal stage consumed significantly more aphids in 24 h than the other stages. The females had a high rate of predation comparable to the fifth nymphal stage. M. basicornis was shown to be capable of completing its cycle on preys like Myzus persicae or Macrosiphum euphorbiae. The biological characteristics and prey consumption by M. basicornis were strongly influenced by the prey species and size, the latter being able to influence the prey preference of the predator.0 Links

Article Details

How to Cite
Baños-Díaz, H. L., & Martinez-Rivero, M. de los Ángeles. (2018). Development and prey preference of Macrolophus basicornis (Hemiptera: Miridae) feeding on Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). Revista De Protección Vegetal, 33(1). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/946
Section
ORIGINAL ARTICLES

References

Lykouressis DP, Perdikis DCh, Chalkia ChA. The effects of natural enemies on aphids populations on processing tomato. Entomol. Hellenica 13(1999–2000): 35–42.

Urbaneja A, Monton H, Molla O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. Journal of Applied Entomology. 2009;133: 292–296.

Sampson A, King V. Macrolophus caliginosus, field establishment and pest control effect in protected tomatoes. Bull. IOBC/WPRS 1996; 19(1): 143–146.

Lykouressis D, Perdikis D, Tsagarakis A. Polyphagous mirids in Greece: Host plants and abundance in traps placed in some crops. Boll. Lab. Entomol. Agr. Fillippo Silvestri 2000; 56: 57–68.

Grillo H. Heterópteros de Cuba. [Tesis presentada en opción al título de Doctor en Ciencias]. Universidad Central de las Villas, Cuba. 2012.

Martínez MA, Duarte L, Baños HL, Rivas A, Sánchez A. Predatory mirids (Hemiptera: Heteroptera: Miridae) in tomato and tobacco in Cuba. Rev. Protección Veg. 2014; 29(3): 204-207.

Machtelinckx T, Van Leeuwen T, Van De Wiele T, Boon N, De Vos W, Sánchez JA, et al. Microbial community of predatory bugs of the genus Macrolophus (Hemiptera: Miridae). BMC Microbiology. 2012;12(Suppl 1):S9. http://www.biomedcentral.com/1471-2180/12/S1/S9.

Bueno VHP, van Lenteren JC, Lins JC, Calixto AM, Montes FC, Silva DB, Santiago LD, Perez LM. New records of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) predation by Brazilian Hemipteran predatory bugs. J. Appl. Entomol. 2012; 137:29-34

Krebs JR , Mccleery RH. Optimizations in behavioural ecology. In Krebs J.R. & Davies N.B. (eds): Behavioural Ecology, an Evolutionary Approach. Blackwell Scientific, Oxford, 1984:91–121.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

Chesson J. The estimation and analysis of preference and its relationship to foraging models. Ecology. 1983; 64: 1297–1304.

Hatherly IS, Pedersen ABP, Bale AJS. Effect of host plant, prey species and intergenerational changes on the prey preferences of the predatory mired Macrolophus caliginous. BioControl. 2009; 54:35–45

Vandekerkhove B, De Puysseleyr V, Bonte M, De Clercq P. Fitness and predation potential of Macrolophus pygmaeus reared under artificial conditions. Insect Science. 2011; 18, 682–688.

Alvarado P, Baltà O, Alomar O. Efficiency of four heteroptera as predators of Aphis gossypii and Macrosiphum euphorbiae (Hom.: Aphididae). Entomophaga. 1997; 42 (1–2):215–226

Hamdi F, Chadoeuf J, Bonato O. Functional relationships between plant feeding and prey feeding for a zoophytophagous bug. Physiol Entomol 2013; 38(3): 241-245.

Urbaneja A, Tapia G, Stansly P. Influence of host plant and prey availability on developmental time and surviorship of Nesidiocoris tenius (Het.: Miridae), Biocontrol Sci. Technol. 2005; 15 (5): 513-518.

Naranjo SE, Gibson RL. Phytophagy in predaceous Heteroptera: effects on life history and population dynamics. Proceedings Tomas Say Publications in Entomology. 1996:57-96

Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA. Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. Journal of Chemical Ecology. 1990; 16 3091– 3118.

Pyke GH, Pullian HR, Charnov EL. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology. 1977; 52:137–154.

Williams DD. A laboratory study of predator–prey interactions of stoneflies and mayflies. Freshwater Biology. 1987; 17: 471–490

Eubanks MD, Denno RF. Health food versus fast food: the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol Entomol. 2000; 25(2):140-146

Lins Junior JC. Search capacity, prey preference, predation rates and reaction to prey and predator induced volatiles of predatory mirids of two tomato pests, Tuta absoluta (Lep.: Gelechiidae) and Bemisia tabaci (Hem.: Aleyrodidae). [Tese (doutorado)], Universidade Federal de Lavras, Lavras. 2014:116pp.

Perdikis DCh, Lykouressis DP, Economou LP. The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. BioControl. 1999; 44: 281–289.

Perdikis DCh, Lykouressis DP. Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomologia Experimentalis et Applicata.2002;102: 261–272.

Cohen AC, Tang R. Relative prey weight influences handling time and extracted biomass in predatory hemipterans. Environmental Entomology. 1997; 26:559–565.

Tschanz B, Bersier LF, Bacher S. Functional responses: a question of alternative prey and predator density. Ecology. 2007; 88:1300–1308.

van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, Rijn van PCJ, Thomas MB, Tomassini MC, Zeng QQ. Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl. 2003; 48: 3–38.

Most read articles by the same author(s)