Epidemiology of african cassava mosaic diseases in Huíla province, Angola

Main Article Content

Jesus J. Moisés-Capenda da Rosa
Ileana Miranda-Cabrera
Yamila Martínez-Zubiaur

Abstract

The epidemiological factors influencing on the incidence and severity of the African Cassava Mosaic Disease (CMD) were evaluated in two localities of the province of Huila, Angola. Twenty production fields were monitored, and a survey was applied to the farmers. One percent of the plants growing in each field was sampled in June, 2016; February and June, 2017; and February, 2018. Severity and whitefly density were compared by an analysis of variance. CMD symptoms were observed in 100 % of the fields, and the severity showed significant differences for both locations in each period. In Caluquembe, the density of whiteflies (Bemisia tabaci) was greater in June 2016 than in the rest of the periods analyzed, while, in the same period, it was significantly lower in Kuvango. Severity was determined not only by the density of the insect. The climatic variables analyzed showed that temperature and humidity had the greatest influence in both locations, although rainfall and altitude also influenced. The analysis of the fraction attributable to the risk permitted the estimation of the risk on CMD severity by factors like field size, cutting origins, host crops (cabbage and tomato crops) in the field or nearby, and no use of physical protection measures. It was detected that more than 66 % of the fields surveyed were exposed to these risk factors. The results confirmed the need for making changes in the tactics of CMD management in order to reduce its incidence and severity.

Article Details

How to Cite
Moisés-Capenda da Rosa, J. J., Miranda-Cabrera, I., & Martínez-Zubiaur, Y. (2018). Epidemiology of african cassava mosaic diseases in Huíla province, Angola. Revista De Protección Vegetal, 33(3). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/987
Section
ORIGINAL ARTICLES

References

FAO. Food and Agriculture Organization. Statweb site, http://www.fao.org/stat. 2013.

Zerbini FM, Briddon RW, Idris A, Darren PM, Moriones E, Navas-Castillo J, et al. ICTV Virus Taxonomy Profile: Geminiviridae. Journal of General Virology. 2017; 98:131-133. Report: http://www.ictv.global/report/geminiviridae

Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, et al. Geminivirus strain demarcation and nomenclature. Arch. Virol. 2008; 153: 783-821.

Fondong VN, Pita JS, Rey C, Beachy RN, Fauquet CM. Evidence of synergism between African cassava mosaic virus and the new double recombinant Geminivirus infecting cassava in Cameroon. J. Gen. Virol. 2000; 81: 287-297.

Monde G, Walangululu J, Winter S, Bragard C. Dual infection by cassava begomoviruses in two leguminous species (Fabaceae) in Yangambi, Northeastern Democratic Republic of Congo. Archives of Virology. 2010; 155:1865-1869.

Maruthi MN, Seal S, Colvin J, Briddon RW, Bull SE. East African cassava mosaic Zanzibar virus a recombinant begomovirus species with a mild phenotype, Arch. Virol. 2004;149: 2365-2377.

Zhou X, Robinson DJ, Harrison BD. Types of variation in DNA among isolates of East African cassava mosaic virus from Kenya, Malawi and Tanzania. J. Gen. Virol. 1998; 79:2835-2840.

Bull SE, Briddon RW, Serubombwe WS, Ngugi K, Markham PG, Stanley J. Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. J. Gen. Virol. 2006; 87: 3053-3065.

Berrie LC, Palmer KE, Rybicki EP, Rey MEC. Molecular characterization of a distinct South African cassava infecting geminivirus. Arch. Virol.1998; 143:2253-2260.

Harimalala M, Lefeuvre P, De Bruyn A, Tiendrébeogo F, Hoareau M, Villemot J, et al. A novel cassava--infecting begomovirus from Madagascar: Cassava Mosaic Madagascar Virus. Archives of Virology. 2012; 157:2027-2030.

Legg J, Lava KP, Makeshkumar T, Tripathi L, Ferguson M, Kanju E, et al. Cassava Virus Diseases: Biology, Epidemiology, and Management. In: Gad L, Nikolaos IK (eds). Advances in Virus Research. 2014; 91:85-142.

Lava KP, Akinbade SA, Dixon AGO, Mahungu NM, Mutunda MP, Kiala D, et al. First report of the occurrence of East African cassava mosaic virus-Uganda (EACMV-UG) in Angola. New Disease Reports. 2008; 18:20. http://www.bspp.org.uk/publications/newdiseasereports.

Matic S, Pais da Cunha AT, Thompson JR, Tepper M. An analysis of viruses associated with cassava mosaic disease in three Angolan province. Journal of plants pathology. 2012; 94(2):443-450. Edizione ETS Pisa.

Anónimo. Direcção Províncial da Agricultura e do Desenvolvimento Rural, Pescas e Ambiente da Huíla (DPADR-Huíla). Relatório de Balanço da Campanha Agrícola 2013/2014. Governo da Província da Huíla. República de Angola. Anexos, Maio de 2014.

Anónimo. Relatório de Balanço Ministério da Agricultura e do Desenvolvimento rural. República de Angola. Base de datos. 2014. Disponible en http://www.contrystat.org/ago

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina: http://www.infostat.com.ar

Zinga I, Chiroleu F, Legg J, Lefeuvre P, Kosh Komba E, Semballa S, et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. 2013; 44:6-12.

Legg JP. Epidemiology of a whitefly-transmitted cassava mosaic geminivirus pandemic in Africa. In: Stansly, P.A. and Naranjo, S.E. (eds) Bemisia: Bionomics and Management of a Global Pest. Springer, Dordrecht-Heidelberg-London-New York. 2010; pp. 233-257.

Thompson LJ, Macfadyen S, Hoffmann AA. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control. 2010; 52(3):296-306.

Hodkinson ID. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. J Nat Hist. 2009; 43(1-2):65-179.

Bash ES, Bamwefa BA, Winter S, Dixon SAGO. Distribution and Current Status of Cassava Mosaic Disease and Begomovirus in Guinea. Research Article in AJCRT. 2011;9(1):17-23.

Islam W, Zhang J, Adnan M, Nonan A, Zainan M, Wu Z. Plant Virus Ecology: a glimpse of recent accomplishments. Applied Ecology and Environment Research 15 (1):691-705. http://www.aloki.hu. ISSN 15891623 (Print). 2017; ISSN 17850037 (Online). Budapest, Hungary.

Alabi OJ, Mulenga RM, Legg JP. Mosaic diseases I: Cassava Mosaic. In: Virus Diseases of Tropical and Subtropical Cropseds P. Tennant and G. Fermin CAB International. 2015. http://lccn.loc.gov/2015030126

Seruwagi P, Sserubombwe WS, Legg JP, Ndunguru J, Thresh JM. Methods of surveying the incidence and severity of cassava mosaic disease and whitefly vector populations on cassava in Africa: a review. Virus Research. 2004; 100:129-142. Doi: 10.1016/j.virusres. 2003.12.021.

Robertson IAD. The whitefly, Bemisia tabaci (Gennadius) as a vector of African cassava mosaic virus at the Kenya coast and ways in which the yield losses in cassava, Manihot esculenta Crantz caused by the virus can be reduced. Insect Science and its Application. 1987; 8:797-801.

Jeremiah SC, Ndyetabula IL, Mkamilo GS, Haji S, Muhanna MM, Chuwa C, et al. The dynamics and environmental influence on interactions between cassava brown streak disease and the whitefly, Bemisia tabaci. Phytopathology. 2015; 105: 646-655. Doi: 10.1094/PHYTO-05-14-0146-R.

Mahatma L, Mahatma MK, Pandya JR, Solanki RK, Solanki VA. Epidemiology of Begomoviruses: A Global Perspective. In: Gaur R, Petrov N, Patil B, Stoyanova M (eds). Plant Viruses: Evolution and Management. 2016; pp171-188. Springer, Singapore.

Most read articles by the same author(s)

> >>