Caracterización de la variabilidad genética de cepas de Pseudomonas spp. patógenas en arroz

Contenido principal del artículo

Deyanira Rivero González
Odaylin Plasencia Márquez
Ariel Cruz Triana
Mylene Corzo López
Benedicto Martínez Coca
Yamila Martínez Zubiaur

Resumen

El objetivo de este trabajo fue caracterizar la variabilidad genética de cepas de Pseudomonas spp. causantes de la Pudrición parda de la vaina en arroz, en Cuba, mediante el análisis de regiones genómicas. Se realizó un primer agrupamiento basado en el análisis de la huella genética mediante PCR. Posteriormente, se desarrolló el análisis a través de rep-PCR (ERIC, BOX y REP-PCR). En los dos tipos de ensayos las cepas mostraron variabilidad molecular, lo que se evidenció por la formación de tres grupos de Pseudomonas que circulan en el país. El primer grupo estuvo conformado por las cepas A74 y A75, el segundo incluyó las cepas A90 y A91, y el último relacionó la mayoría de las cepas (A9, A36, A63, PR1 y PR3); estas últimas se identificaron como Pseudomonas sp. o Pseudomonas fluorescens.

Detalles del artículo

Cómo citar
Rivero González, D. ., Plasencia Márquez, O. ., Cruz Triana, A. ., Corzo López, M. ., Martínez Coca, B. ., & Martínez Zubiaur, Y. . (2022). Caracterización de la variabilidad genética de cepas de Pseudomonas spp. patógenas en arroz. Revista De Protección Vegetal, 37(1), https://cu-id.com/2247/v37n1e10. Recuperado a partir de https://revistas.censa.edu.cu/index.php/RPV/article/view/1240
Sección
ARTÍCULOS ORIGINALES

Citas

Martínez S, Bao L, Escalante F. Manual de Identificación de Enfermedades y Plagas en el Cultivo del Arroz. Instituto Nacional de Investigación Agropecuaria Uruguay. Boletín de divulgación. 2018;116:66 p.

Pérez HI, Rodríguez I, García RM. Principales enfermedades que afectan al cultivo del arroz en Ecuador y alternativas para su control. Revista Científica Agroecosistemas. 2018; 6(1):16-27.

Pedraza LA, Bautista J, Uribe-Vélez D. Seed-borne Burkholderia glumae infects rice seedling and maintains bacterial population during vegetative and reproductive growth stage. Plant Pathol. J. 2018; 34(5):393-402.

CABI. Pseudomonas syringae pv. oryzae (halo blight). Invasive Species Compendium. 2019; Wallingford, UK: CAB International. https://www.cabi.org/isc/datasheet/44981

Musonerimana S, Bez C, Licastro D, Habarugira G, Bigirimana J, Venturi V. Pathobiomes Revealed that Pseudomonas fuscovaginae and Sarocladium oryzae Are Independently Associated with Rice Sheath Rot. Microbial Ecology. 2020; https://doi.org/10.1007/s00248-020-01529-2

Alam K, Islam M, Li C, Sultana S, Zhong L, Shen Q, et al. Genome Mining of Pseudomonas Species; Diversity and Evolution of Metabolic and Biosynthetic Potential. Molecules. 2021; 26:7524. https://doi.org/10.3390/ molecules26247524

Yi B, Dalpke AH. Revisiting the intrageneric structure of the genus Pseudomonas with complete whole genome sequence information: Insights into diversity and pathogen-related genetic determinants. Infections, Genetics and Evolution. 2022; 97. https://doi.org/10.1016/j.meegid.2021.105183

Peix A, Ramírez ME, Velázquez BE. The current status of Pseudomonas revisited: An update. Infection, Genetics and Evolution. 2018; 57:106-116.

He R, Liu P, Jia B, Xue S, Wang X, Hu J, et al. Genetic diversity of Pseudomonas syringae pv. actinidiae strains from different geographic regions in China. Phytopathology. 2019; 109(3):347-357.

Abdel-Rhman S, Rizk DE. Comparative assessment of different PCR-based typing methods of Pseudomonas aeruginosa isolates. Infection and drug resistance. 2021; 14:1019-1035.

Cottyn B, Regalado E, Lanoot B, De Cleene M, Mew TW, Swings J. Bacterial populations associated with rice seed in the tropical environment. Phytopathology. 2001;91(3):282-92.

Cottyn B, Barrios H, George T, Vera-Cruz CM. Characterization of rice sheath rot from Siniloan, Philippines. Int Rice Res Notes. 2002;27(1):39-40.

ONEI. Oficina Nacional de Estadística e Información. Anuario Estadístico de Cuba 2020. Capítulo 9: Agricultura, ganadería, silvicultura y pesca. Edición 2021. [En línea]. [Consultado: 28 de enero de 2022]. Disponible en: http://www.onei.gob.cu/node/16275

Ravi A, Prathap V, Narayana P, Sokka S, Sivaramakrishnan S. Assessment of Genetic Diversity in Pseudomonas fluorescens using PCR-based Methods. Bioremediation, Biodiversity and Bioavailability. 2011; 5(1):10-16.

Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant molecular biology reporter. 1983; 1(4):19-21.

Onasanya A, Basso A, Somado E, Gasore ER, Nwilene FE, Ingelbrecht I, et al. Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology. 2010; 9(2):89-105.

Sambrook J, Fritsch ER, Maniatis T. Molecular Cloning: A Laboratory Manual (2nd ed.). 1989. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Quibod IL, Grande G, Oreiro EG, Borja FN, Dossa GS, Mauleon R, et al. Rice-Infecting Pseudomonas Genomes Are Highly Accessorized and Harbor Multiple Putative Virulence Mechanisms to Cause Sheath Brown Rot. PloS ONE. 2015; 10(9):e0139256.

CABI. Crop Protection Compendium [CD-Rom]. 2006. Wallingford, Londres: CABI.

Viteri A, Regalado H, Toaza A. Identificación de Pseudomonas fluorescens y Pseudomonas marginalis, causantes del síndrome del peridermo “Pink Eye” en papa. Revista Científica Ecuatoriana. 2020; 7(2):49-59.

Beiki F, Busquets A, Gomila M, Rahimian H, Lalucat J, García E. New Pseudomonas spp. Are Pathogenic to Citrus. PLoS ONE. 2016; 11(2):e0148796.

Aflaha I, Chairul J, Baharuddin A, Kuswinanti T. Molecular identification of bacteria causing grain rot disease on rice. IOP Conference Series: Earth and Environmental Science. 2020;486:012165. doi:10.1088/1755-1315/486/1/012165

Bangratz M, Wonni I, Kini K, Sondo M, Brugidou C, Béna G, et al. Design of a new multiplex PCR assay for rice pathogenic bacteria detection and its application to infer disease incidence and detect co-infection in rice fields in Burkina Faso. PLoS ONE. 2020; 15 (4): e0232115. https://doi.org/10.1371/journal.pone.0232115

Ogier JC, Pages S, Galan M, Barret M, Gaudriault S. rpoB, a promising marker for analizing the diversity of bacterial communities by amplicon sequencing. BMC Microbiology. 2019; 19(171):16 p.

Musonerimana S, Venturi V. The rice sheath rot pathogen Pseudomonas fuscovaginae; microbiome and cell-cell signaling studies. [PhD Thesis in Molecular Biology]. 2020; 156 p. [En línea]. [Consultado: 16 de febrero de 2022]. Disponible en: https://iris.sissa.it/retrieve/handle/20.500.11767/112329/124405/Samson_Thesis_2020.pdf

Artículos más leídos del mismo autor/a

> >>