Caracterización de bacterias aisladas a partir de nematodos como controladores biológicos potenciales de Meloidogyne spp.

Contenido principal del artículo

Ileana Sánchez Ortiz
Irene Alvarez Lugo
Eulogio Pimentel Vázquez
Jesús Mena Campos

Resumen

Los objetivos de este estudio fueron caracterizar, por métodos moleculares y convencionales, tres cepas nativas aisladas de nematodos parasíticos para evaluar sus potencialidades biocontroladoras sobre Meloidogyne spp. y determinar sus posibles atributos de patogenicidad sobre estos organismos. La identidad de las cepas se confirmó mediante secuenciación del ARNr 16S. La efectividad de Bacillus thuringiensis CIGBR23, Sphingobacterium sp. CIGBTb y Stenotrophomonasmaltophilia CIGBG1 para reducir la infestación de Meloidogyne spp. se evaluó en macetas con Cucurbita maxima RG-T150. También se determinó el efecto promotor del crecimiento de las cepas. El índice de agallamiento, la longitud y la masa fresca de las ramas y las raíces se determinaron a los 35 días de inoculación del experimento. Las tres cepas controlaron Meloidogyne spp.. Sphingobacterium sp. CIGBTb fue el más efectivo de los tratamientos y redujo el índice de infestación de 3 a 1; mientras que B. thuringiensis CIGBR23 a 1,6 y S. maltophiliaCIGBG1 a 1,7 (escala 0-5 de Hussey y Janssen). Sphingobacterium sp. CIGBTb y S. maltophilia CIGBG1 también disminuyeron significativamente (mayor que 50 %) el número de nódulos en las raíces de C. maxima (p˂0,05) respecto al control. Además, el tratamiento con B. thuringiensis CIGBR23 aumentó la masa de las plantas en un 17 %. Las tres cepas presentaron enzimas quitinasas, dos (CIGBR23 y CIGBG1) excretaron además lipasas y proteasas; mientras que, CIGBG1 produce también fosfolipasas y sulfuro de hidrógeno.

Detalles del artículo

Cómo citar
Sánchez Ortiz, I., Alvarez Lugo, I., Pimentel Vázquez, E., & Mena Campos, J. (2018). Caracterización de bacterias aisladas a partir de nematodos como controladores biológicos potenciales de Meloidogyne spp. Revista De Protección Vegetal, 33(1). Recuperado a partir de https://revistas.censa.edu.cu/index.php/RPV/article/view/948
Sección
ARTÍCULOS ORIGINALES

Citas

Sikora RA, Fernández E. Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J, editors. Plant parasitic nematodes in subtropical and tropical agriculture. CAB International. Wallingford, UK. 2005; p. 319-92.

Gómez L, Rodríguez M, Enrique R, Miranda I, González E. Factores limitantes de los rendimientos y calidad de las cosechas en la producción protegida de hortalizas en Cuba. Rev Protección Veg. 2009;24(2):117-22.

Whitehead AG. Plant nematode control: CAB International. 1998;384 pp

Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology. 2009;84(1):11-8.

Sánchez I, Mena J, Coca Y, Marín M, Hernández A, Olazábal A , et al.Acción in vitro de cepas bacterianas sobre Haemonchus spp. Informe Preliminar. Rev Salud Anim. 2003;25(3): 145-8.

Bird AF, Bird J. The structure of nematodes. San Diego, USA: Academic Press. 1991;316 p.

Berg G, Martinez JL. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Frontiers in Microbiology. 2015;6:241.

Liu J, Yang L-L, Xu C-K, Xi J-Q, Yang F-X, Zhou F, et al. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. International journal of systematic and evolutionary microbiology. 2012;62(8):1809-13. doi: doi:10.1099/ijs.0.033670-0.

Tian B, Yang J, Zhang K-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS microbiology ecology. 2007;61(2):197-213. doi: 10.1111/j.1574-6941.2007.00349.x.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research. 1997;25(24):4876-82.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution. 1980;16(2):111-20.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 1987;4(4):406-25.

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-91.

Shimahara K, Takiguchi Y. Preparation of crustacean chitin. Methods in enzymology. 1988;161:417-23.

Cheng CY, Li YK. An Aspergillus chitosanase with potential for large‐scale preparation of chitosan oligosaccharides. Biotechnology and Applied Biochemistry. 2000;32(3):197-203.

Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnology Techniques. 1998;12(3):183-6.

Seeley HW, VanDemark PJ, Lee JJ. Microbes in Action. A Laboratory manual of Microbiology. Fourth Edition ed. WH Freeman and Company. New York; 1991. p. 450.

Frazier WC. A method for the detection of changes in gelatin due to bacteria. The Journal of Infectious Diseases. 1926:302-9.

Clarke PH. Hydrogen sulphide production by bacteria. Microbiology. 1953;8(3):397-407.

Hussey R, Janssen G. Root-knot nematodes: Meloidogyne species. In: Starr J, Cook R, Bridge J, editors. Plant resistance to parasitic nematodes. CAB International. Wallingford, UK. 2002,p. 43-70.

Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol. 2017;33(7):131. doi: 10.1007/s11274-017-2303-9.

Mena J, Pimentel E, Veloz L, Hernández A, León L, Ramírez Y, et al. Aislamiento y determinación de cepas bacterianas con actividad nematicida. Mecanismo de acción de C. paurometabolum C-924 sobre nematodos. Biotecnología Aplicada. 2003;20(4):248-52.

Yun C, Amakata D, Matsuo Y, Matsuda H, Kawamukai M. New Chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl Environ Microbiol. 2005;71(9):5138-44. doi: 10.1128/AEM.71.9.5138-5144.2005.

Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis Toxins: An overview of their biocidal activity. Toxins. 2014;6(12):3296-325. doi: 10.3390/toxins6123296.

Yang J, Liang L, Li J, Zhang KQ. Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol. 2013;97(16):7081-95. doi: 10.1007/s00253-013-5045-0.