Characterization of Cuban native bacteria isolated from nematodes as potential biological control agents for Meloidogyne spp.

Main Article Content

Ileana Sánchez Ortiz
Irene Alvarez Lugo
Eulogio Pimentel Vázquez
Jesús Mena Campos

Abstract

The objectives of this study were the molecular and conventional characterization of three native strains isolated from parasitic nematodes, evaluation of their potential to control Meloidogyne spp., and determination of their possible pathogenicity traits against nematodes. The identity of the strains Bacillus thuringiensis CIGBR23, Sphingobacterium sp. CIGBTb, and Stenotrophomonasmaltophilia CIGBG1 was confirmed by 16S rRNA sequencing. Their effectiveness to reduce infestation of Meloidogyne spp. was evaluated in Cucurbita maxima RG-T150 as host plant growing in pot. The plant growth-promoting effects of the strains were also determined. The root-galling index, branch length, and branch and root fresh weights were determined 35 days after nematode inoculation. The three strains controlled Meloidogyne spp. The treatment with Sphingobacterium sp.CIGBTbwasthe most effective, reducing the infestation index from 3 to 1; whereas it was 1.6 for B. thuringiensis CIGBR23 and 1.7 for S.maltophilia CIGBG1 (Hussey and Janssen’s scale 0 -5). Sphingobacterium sp.CIGBTb and S.maltophilia CIGBG1 also significantly reduced the number of root galls by C. maxima (higher than 50 %)in relation to the control (p˂0.05). On the other hand, the treatment with B. thuringiensis CIGBR23 increased plant weight in 17 %. The three strains produced chitinase enzymes. Two of the strains (CIGBR23 and CIGBG1) also excreted lipases and proteases, and CIGBG1, in addition to these enzymes, also produced phospholipase and hydrogen sulfide.

Article Details

How to Cite
Sánchez Ortiz, I., Alvarez Lugo, I., Pimentel Vázquez, E., & Mena Campos, J. (2018). Characterization of Cuban native bacteria isolated from nematodes as potential biological control agents for Meloidogyne spp. Revista De Protección Vegetal, 33(1). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/948
Section
ORIGINAL ARTICLES

References

Sikora RA, Fernández E. Nematode parasites of vegetables. In: Luc M, Sikora RA, Bridge J, editors. Plant parasitic nematodes in subtropical and tropical agriculture. CAB International. Wallingford, UK. 2005; p. 319-92.

Gómez L, Rodríguez M, Enrique R, Miranda I, González E. Factores limitantes de los rendimientos y calidad de las cosechas en la producción protegida de hortalizas en Cuba. Rev Protección Veg. 2009;24(2):117-22.

Whitehead AG. Plant nematode control: CAB International. 1998;384 pp

Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied microbiology and biotechnology. 2009;84(1):11-8.

Sánchez I, Mena J, Coca Y, Marín M, Hernández A, Olazábal A , et al.Acción in vitro de cepas bacterianas sobre Haemonchus spp. Informe Preliminar. Rev Salud Anim. 2003;25(3): 145-8.

Bird AF, Bird J. The structure of nematodes. San Diego, USA: Academic Press. 1991;316 p.

Berg G, Martinez JL. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Frontiers in Microbiology. 2015;6:241.

Liu J, Yang L-L, Xu C-K, Xi J-Q, Yang F-X, Zhou F, et al. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. International journal of systematic and evolutionary microbiology. 2012;62(8):1809-13. doi: doi:10.1099/ijs.0.033670-0.

Tian B, Yang J, Zhang K-Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS microbiology ecology. 2007;61(2):197-213. doi: 10.1111/j.1574-6941.2007.00349.x.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids research. 1997;25(24):4876-82.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution. 1980;16(2):111-20.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 1987;4(4):406-25.

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-91.

Shimahara K, Takiguchi Y. Preparation of crustacean chitin. Methods in enzymology. 1988;161:417-23.

Cheng CY, Li YK. An Aspergillus chitosanase with potential for large‐scale preparation of chitosan oligosaccharides. Biotechnology and Applied Biochemistry. 2000;32(3):197-203.

Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnology Techniques. 1998;12(3):183-6.

Seeley HW, VanDemark PJ, Lee JJ. Microbes in Action. A Laboratory manual of Microbiology. Fourth Edition ed. WH Freeman and Company. New York; 1991. p. 450.

Frazier WC. A method for the detection of changes in gelatin due to bacteria. The Journal of Infectious Diseases. 1926:302-9.

Clarke PH. Hydrogen sulphide production by bacteria. Microbiology. 1953;8(3):397-407.

Hussey R, Janssen G. Root-knot nematodes: Meloidogyne species. In: Starr J, Cook R, Bridge J, editors. Plant resistance to parasitic nematodes. CAB International. Wallingford, UK. 2002,p. 43-70.

Aballay E, Prodan S, Zamorano A, Castaneda-Alvarez C. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World J Microbiol Biotechnol. 2017;33(7):131. doi: 10.1007/s11274-017-2303-9.

Mena J, Pimentel E, Veloz L, Hernández A, León L, Ramírez Y, et al. Aislamiento y determinación de cepas bacterianas con actividad nematicida. Mecanismo de acción de C. paurometabolum C-924 sobre nematodos. Biotecnología Aplicada. 2003;20(4):248-52.

Yun C, Amakata D, Matsuo Y, Matsuda H, Kawamukai M. New Chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl Environ Microbiol. 2005;71(9):5138-44. doi: 10.1128/AEM.71.9.5138-5144.2005.

Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis Toxins: An overview of their biocidal activity. Toxins. 2014;6(12):3296-325. doi: 10.3390/toxins6123296.

Yang J, Liang L, Li J, Zhang KQ. Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol. 2013;97(16):7081-95. doi: 10.1007/s00253-013-5045-0.