Status of CaLsol vectors that infect solanaceous plants in the American regions, implications for Cuba, I: Elements of their identification, distribution, and bioecology

Main Article Content

Heyker L. Baños Díaz
Lizandra Guerra Arzuaga
Alberto Fereres

Abstract

Global food security could be threatened in the coming years by the emergence and spread of emerging pests in crops. Psyllids are considered as possible destructive pests due to their relationships with some important plant pathogens. Bactericera cockerelli Sulc (Hemiptera: Triozidae) is recognized as an efficient vector of the bacterium Candidatus Liberibacter solanacearum (CaLsol), an invasive pest according to the EPPO, which causes diseases in potatoes, tomatoes, peppers, and other solanaceous and some apiaceous crops. Known the vector-bacteria complex to be present in different countries of the world belonging to the American continent , Europe and New Zealand, 61 scientific papers related to this topic were reviewed Changes in the climatic variables, the biological distribution of this insect-vector system, the high ecological plasticity that allows this insect to develop different biotypes, depending on the characteristics of the area where it develops, could complicate the control of the insect-pathogen system. These characteristics make necessary a maintained extreme surveillance in those countries where it is not yet present. So far, the bacterium and the vector are not present in Cuba; however, its proximity to countries where it is present, the existence of optimal climatic conditions host plants, and the increasing tourism and international trade, make necessary to offer updated information on this disease, the causal agents and their vectors as a contribution to the preparation of the scientific-technical-productive personnel and other decission makers.

Article Details

How to Cite
Baños Díaz, H. L., Guerra Arzuaga, L., & Fereres, A. (2021). Status of CaLsol vectors that infect solanaceous plants in the American regions, implications for Cuba, I: Elements of their identification, distribution, and bioecology. Revista De Protección Vegetal, 36(1). Retrieved from https://revistas.censa.edu.cu/index.php/RPV/article/view/1126
Section
REVIEW ARTICLES

References

ONU. Creciendo a un ritmo menor, se espera que la población mundial alcanzará 9.700 millones en 2050 y un máximo de casi 11.000 millones alrededor de 2100: Informe de la ONU. Perspect la Población Mund 2019 [Internet]. 2019;1:1-4. Available from: https://population.un.org/wpp/Publications/Files/WPP2019_PressRelease_ES.pdf

Karuppaiah V, Sujayanad GK. Impact of climate change on population dynamics of insect pests. World J Agric Sci [Internet]. 2012;8(3):240-6. Available from: https://www.researchgate.net/publication/259240426

Bebber DP, Ramotowski MAT, Gurr SJ. Crop pests and pathogens move polewards in a warming world. Nat Clim Chang [Internet]. 2013;3(11):985-8. Available from: http://dx.doi.org/10.1038/nclimate1990

Syfert MM, Serbina L, Burckhardt D, Knapp S, Percy DM. Emerging new crop pests: Ecological modelling and analysis of the South American potato psyllid Russelliana solanicola (Hemiptera: Psylloidea) and its wild relatives. PLoS One. 2017;12(1).

Munyaneza JE, Henne DC. Leafhopper and Psyllid Pests of Potato [Internet]. Insect Pests of Potato. Elsevier Inc.; 2013. 65-102 p. Available from: http://dx.doi.org/10.1016/B978-0-12-386895-4.00004-1

Butler CD, Trumble JT. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terr Arthropod Rev [Internet]. 2012;5(2):87-111. Available from: http://booksandjournals.brillonline.com/content/journals/10.1163/187498312x634266

Liu D, Trumble JT. Comparative fitness of invasive and native populations of the potato psyllid ( Bactericera cockerelli ). Entomol Exp Appl [Internet]. 2007 Apr;123(1):35-42. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2007.00521.x/full

Butler CD, Walker GP, Trumble JT. Feeding disruption of potato psyllid, Bactericera cockerelli, By imidacloprid as measured by electrical penetration graphs. Entomol Exp Appl. 2012;142(3):247-57.

Haapalainen M. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Ann Appl Biol [Internet]. 2014 Sep [cited 2019 Jan 8];165(2):172-98. Available from: http://doi.wiley.com/10.1111/aab.12149

Burckhardt DH. Psylloid pest of temperate and subtropical crop and ornamental plants (Hemiptera, Psylloidea):A review. Trends Agril Sci. 1994;2:173-86.

Castillo C, Fu Z, Burckhardt D. First record of the tomato potato Psyllid Bactericera Cockerelli from South America. Bull Insectology. 2019;72(1):85-91.

Munyaneza JE, Crosslin JM, Upton JE. Association of <I>Bactericera cockerelli</I> (Homoptera: Psyllidae) with “Zebra Chip,” a New Potato Disease in Southwestern United States and Mexico. J Econ Entomol [Internet]. 2007;100(3):656-63. Available from: http://openurl.ingenta.com/content/xref?genre=article&issn=0022-0493&volume=100&issue=3&spage=656

Crosslin JM, Munyaneza JE, Brown JK, Liefting LW. Potato Zebra Chip Disease: A Phytopathological Tale. Plant Heal Prog [Internet]. 2010 Jan [cited 2019 Jan 8];11(1):33. Available from: https://apsjournals.apsnet.org/doi/10.1094/PHP-2010-0317-01-RV

Borges KM, Cooper WR, Garczynski SF, Thinakaran J, Jensen AS, Horton DR, et al. “candidatus liberibacter solanacearum” associated with the psyllid, bactericera maculipennis (Hemiptera: Triozidae). Environ Entomol. 2017;46(2):210-6.

Castillo CI, Jensen AS, Snyder WE. Checklist of the Psylloidea ( Hemiptera ) of the U . S . Pacific Northwest. PROC ENTOMOL SOC WASH. 2016;118(4):498-509.

Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A. Association of “Candidatus Liberibacter solanacearum” With the Psyllid, Trioza apicali (Hemiptera: Triozidae) in Europe. J Econ Entomol [Internet]. 2010;103(4):1060-70. Available from: https://academic.oup.com/jee/article-lookup/doi/10.1603/EC10027

Munyaneza JE, Henne DC. Leafhopper and Psyllid Pests of Potato [Internet]. Insect Pests of Potato. Elsevier Inc.; 2013 [cited 2019 Jan 8]. 65-102 p. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123868954000041

Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B. Novel ‘Candidatus Liberibacter’ species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol [Internet]. 2017 Jul [cited 2019 Jan 8];10(4):833-44. Available from: http://doi.wiley.com/10.1111/1751-7915.12707

Salazar LF. Emerging and re-emerging potato diseases in the Andes. Potato Res. 2006;49(1):43-7.

Kuhn; TM de A, Burckhardt D, Queiroz DL de, Teresani GR, Lopes JRS. Occurrence of Russelliana solanicola Tuthill, 1959 (Hemiptera: Psyllidae), potencial vector of ’ Candidatus Liberibacter solanacearum’ on carrot crops. 2016;1959:2016.

Syfert MM, Serbina L, Burckhardt D, Knapp S, Percy DM. Emerging new crop pests: Ecological modelling and analysis of the South American potato psyllid Russelliana solanicola (Hemiptera: Psylloidea) and its wild relatives. PLoS One [Internet]. 2017;12(1):1-18. Available from: http://dx.doi.org/10.1371/journal.pone.0167764

Brlansky RH, Chung KR, Rogers ME. 2006 Florida Citrus Pest Management Guide : Huanglongbing ( Citrus Greening ) 1. 2006;1-3.

Haapalainen M, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI. Genetic Variation of ‘ Candidatus Liberibacter solanacearum’ Haplotype C and Identification of a Novel Haplotype from Trioza urticae and Stinging Nettle. Phytopathology [Internet]. 2018 Aug [cited 2019 Jan 8];108(8):925-34. Available from: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-12-17-0410-R

Sumner-Kalkun JC, Lund MJS, Arnsdorf YM, Carnegie M, Highet F, Ouvrard D, et al. A diagnostic real-time PCR assay for the rapid identification of the tomato-potato psyllid , Bactericera cockerelli ( S development of a psyllid barcoding database. PLoS One. 2020;15(3):1-18.

Thompson S, Fletcher JD, Ziebell H, Beard S, Panda P, Jorgensen N, et al. First report of ’ Candidatus Liberibacter europaeus’ associated with psyllid infested Scotch broom. New Dis Reports [Internet]. 2013;27:6. Available from: http://www.ndrs.org.uk/article.php?id=027006

Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, et al. “Candidatus Liberibacter europaeus” sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environ Microbiol. 2011;13(2):414-26.

Jarausch B, Jarausch W. Establishment of a permanent rearing of Cacopsylla picta (Hemiptera: Psylloidea), the main vector of “Candidatus Phytoplasma mali” in Germany. J Pest Sci (2004). 2014;87(3):459-67.

Orlovskis Z, Canale MC, Thole V, Pecher P, Lopes JR, Hogenhout SA. ScienceDirect Insect-borne plant pathogenic bacteria : getting a ride goes beyond physical contact. Curr Opin Insect Sci. 2015;9:16-23.

Fialová R, Navrátil M, Lauterer P, Navrkalová V. “Candidatus phytoplasma prunorum”: The phytoplasma infection of cacopsylla pruni from apricot orchards and from overwintering habitats in moravia (Czech Republic). Bull Insectology. 2007;60(2):183-4.

Alemán J, Baños H, Ravelo J. Diaphorina citri y la enfermedad Huanglongbing: Una combinación destructiva para la producción citrícola. Rev Protección Veg. 2007;22(3):154-65.

Ouvrard D, Chalise P, Percy DM. Host-plant leaps versus host-plant shuffle: A global survey reveals contrasting patterns in an oligophagous insect group (Hemiptera, Psylloidea). Syst Biodivers. 2015;13(5):434-54.

Prager SM, Trumble JT. Psyllids: Biology, Ecology, and Management [Internet]. Sustainable Management of Arthropod Pests of Tomato. Elsevier Inc.; 2018. 163-181 p. Available from: https://doi.org/10.1016/B978-0-12-802441-6.00007-3

Burckhardt D, Lauterer P. A taxonomic reassessment of the triozid genus bactericera (Hemiptera: Psylloidea). J Nat Hist. 1997;31(1):99-153.

Hodkinson ID. Life cycle variation and adaptation in jumping plant lice ( Insecta : Hemiptera : Psylloidea ): a global synthesis. 2009;43(January):65-179.

Ouvrard D. Psyl’list - The World Psylloidea Database. [Internet]. 2020. 2020 [cited 2020 Jun 24]. Available from: http://www.hemiptera-databases.com/psyllist

University of Tasmania TI of A (TIA). Key to distinguish the tomato-potato psyllid from other psyllids. 2017.

Wallis RL. Ecological studies on the Potato psyllid as pest of potatoes. USDA Tech Bull. 1955;(1107):1-24.

Cerna-Chavez E, Hernández-Bautista O, Ochoa-Fuentes YM, Landeros-Flores J, Aguirre-Uribe LA, Hernández-Juárez A. Morfometría de inmaduros y tablas de vida de Bactericera cockerelli (Hemiptera: Triozidae) de poblaciones del noreste de México. Rev Colomb Entomol. 2018;44(1):53-60.

EPPO. PM 9/25 (1) Bactericera cockerelli and ‘Candidatus Liberibacter solanacearum.’ EPPO Bull [Internet]. 2017 Dec [cited 2019 Jan 8];47(3):513-23. Available from: http://doi.wiley.com/10.1111/epp.12442

Sjölund MJ, Ouvrard D, Kenyon D, Highet F. DEVELOPING AN RT-PCR ASSAY FOR THE IDENTIFICATION OF PSYLLID SPECIES. In: Proceedings Crop Protection in Northern Britain. 2016. p. 4.

Yang XB, Liu TX. Life History and Life Tables of Bactericera cockerelli ( Homoptera : Psyllidae ) on Eggplant and Bell Pepper. Environ Entomol. 2009;38(6):1661-7.

Yang X-B, Zhang Y-M, Henne DC, Liu T-X. Life Tables of Bactericera cockerelli (Hemiptera: Triozidae) on Tomato Under Laboratory and Field Conditions in Southern Texas . Florida Entomol. 2013;96(3):904-13.

Munyaneza JE. Psyllids as Vectors of Emerging Bacterial Diseases of Annual Crops. Southwest Entomol [Internet]. 2010;35(3):471-7. Available from: http://www.bioone.org/doi/abs/10.3958/059.035.0335

Liu D, Trumble JT. Ovipositional preferences , damage thresholds , and detection of the tomato - potato psyllid Bactericera cockerelli ( Homoptera : Psyllidae ) on selected tomato accessions. 2006;197-204.

Swisher KD, Sengoda VG, Dixon J, Echegaray E, Murphy AF, Rondon SI, et al. Haplotypes of the potato psyllid, Bactericera cockerelli, on the wild host plant, Solanum dulcamara, in the pacific Northwestern United States. Am J Potato Res. 2013;90(6):570-7.

Prager SM, Esquivel I, Trumble JT. Factors influencing host plant choice and larval performance in Bactericera cockerelli. PLoS One. 2014;9(4).

Mustafa T, Horton DR, Cooper WR, Swisher KD, Zack RS. Interhaplotype Fertility and Effects of Host Plant on Reproductive Traits of Three Haplotypes of Bactericera cockerelli ( Hemiptera : Triozidae ). Environ Entomol. 2015;1-9.

Swisher KD, Munyaneza JE, Crosslin JM. High Resolution Melting Analysis of the Cytochrome Oxidase I Gene Identifies Three Haplotypes of the Potato Psyllid in the United States. Environ Entomol [Internet]. 2012 Aug 1 [cited 2019 Jan 8];41(4):1019-28. Available from: https://academic.oup.com/ee/article-lookup/doi/10.1603/EN12066

Swisher KD, Thompson B, Alexander V, Olsen N, Crosslin JM. Assessing Potato Psyllid Haplotypes in Potato Crops in the Pacific Northwestern United States. Am J Potato Res. 2014;91:485-91.

Cooper WR, Swisher KD, Garczynski SF, Mustafa T, Munyaneza JE, Horton DR. Wolbachia Infection Differs among Divergent Mitochondrial Haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Ann Entomol Soc Am. 2015;108(2):137-45.

Baumann P. Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. Annu Rev Microbiol. 2005;59(1):155-89.

Thao ML, A. Moran N, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol. 2000;66(7):2898-905.

Nachappa P, Levy J, Pierson E, Tamborindeguy C. Diversity of endosymbionts in the potato psyllid, bactericera cockerelli (Hemiptera: Triozidae), vector of zebra chip disease of potato. Curr Microbiol. 2011;62(5):1510-20.

Gonella E, Tedeschi R, Crotti E, Alma A. Multiple guests in a single host: interactions across symbiotic and phytopathogenic bacteria in phloem-feeding vectors - a review. Entomol Exp Appl. 2019;167(3):171-85.

Hail D, Dowd SE, Bextine B. Identification And Location Of Symbionts Associated With Potato Psyllid (Bactericera cockerelli) Lifestages. Environ Entomol. 2012;41(1):98-107.

Arp AP, Chapman R, Crosslin JM, Bextine B. Low-Level Detection of Candidatus Liberibacter Solanacearum in Bactericera cockerelli (Hemiptera: Triozidae) by 16s rRna Pyrosequencing: Table 1. . Environ Entomol. 2013;42(5):868-73.

Sengoda VG, Cooper WR, Swisher KD, Henne DC, Munyaneza JE. Latent period and transmission of “Candidatus liberibacter solanacearum” by the potato psyllid Bactericera cockerelli (Hemiptera: Triozidae). PLoS One. 2014;9(3):1-10.

Nachappa P, Shapiro AA, Tamborindeguy C. Effect of ‘ Candidatus Liberibacter solanacearum’ on Fitness of Its Insect Vector, Bactericera cockerelli (Hemiptera: Triozidae), on Tomato. Phytopathology [Internet]. 2012 Jan [cited 2019 Jan 8];102(1):41-6. Available from: http://apsjournals.apsnet.org/doi/10.1094/PHYTO-03-11-0084

Villagómez CMM, Sicairos C del RL, Valenzuela JÁL, Espinal LAH, Félix SV, Tiznado JAG. Presencia de Candidatus Liberibacter solanacearum en Bactericera cockerelli Sulc asociada con enfermedades en tomate , chile y papa. Rev Mex Cienc Agríc. 2018;9(3):499-509.

Nelson WR, Sengoda VG, Alfaro-Fernandez AO, Font MI, Crosslin JM, Munyaneza JE. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol [Internet]. 2013 Apr 7 [cited 2019 Jan 8];135(4):633-9. Available from: http://link.springer.com/10.1007/s10658-012-0121-3

Grimm KDS, Garczynski SF. Identification of a New Haplotype of ‘ Candidatus Liberibacter solanacearum ’ in Solanum tuberosum. 2019;103(3):468-74.

Mauck K, Sun P. New Ca . Liberibacter psyllaurous haplotype resurrected from a 49-year-old specimen of Solanum umbelliferum: a native host of the psyllid vector. 2019;(December).

Haapalainen M, Latvala S, Wickström A, Wang J, Pirhonen M, Nissinen AI. A novel haplotype of ‘ Candidatus Liberibacter solanacearum ’ found in Apiaceae and Polygonaceae family plants. Eur J Plant Pathol. 2019;1-11.

Munyaneza JE, Mustafa T, Fisher TW, Sengoda VG, Horton DR. Assessing the likelihood of transmission of candidatus liberibacter solanacearum to carrot by potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Rashed A, editor. PLoS One [Internet]. 2016 Aug 15 [cited 2019 Jan 8];11(8). Available from: https://dx.plos.org/10.1371/journal.pone.0161016

Antolinez CA, Fereres A, Moreno A. Risk assessment of ‘ Candidatus Liberibacter solanacearum ’ transmission by the psyllids Bactericera trigonica and B . tremblayi from Apiaceae crops to potato. Nature/Scientific Reports [Internet]. 2017;7(November 2016):1-10. Available from: http://dx.doi.org/10.1038/srep45534

Teresani GR, Hernández E, Bertolini E, Siverio F, Moreno A, Fereres A, et al. Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts. Spanish J Agric Res. 2017;15(4):11p. https://doi.org/10.5424/sjar/2017154-10762

Most read articles by the same author(s)

> >>