Toxicity of two essential oils to Spotted Wing Drosophila
Main Article Content
Abstract
There has been an increase of invasive insect species during the last decade caused by a drastic change in the biotic communities as a result of an enormous increment of the international trade and the intercontinental transportation, as well as the influence by climate change on insect species. Drosophila suzukii Matsumura (Diptera: Drosophilidae) is emerging as a global threat because of its recent range expansion and the economic impact of crop fruit-colonizing populations. The aim of this work was to evaluate the toxicity effect of two essential oils obtained from plants native to Cuba on the invasive spotted wing drosophila. The susceptibility of males and females of D. suzukii to volatile compounds of Thymus vulgaris and Piper auritum at different concentrations was evaluated after 1, 4, and 24 hours of application. Half-maximal effective concentration (EC50) values at 24 h were calculated in each case. Both T. vulgaris (KD107) and P. auritum (KD48) oils made evident their high toxicity to D. suzukii males and females. The essential oil of T. vulgaris (107) at its highest concentration showed the highest percentage of total mortality. T. vulgaris essential oils could be considered as a source of bioactive substances compatible with integrated pest management (IPM) and biological control agents.
Article Details
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra, siempre que se indique su autor y la primera publicación en esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
References
Pino O, Sánchez Y, Rojas MM. Plant secondary metabolites as an alternative in pest management . I : Background , research approaches and trends. 2013;28(2):81–94.
Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci (2004). 2015;88(3):469–94.
Murphy KA, West JD, Kwok RS, Chiu JC. Accelerating research on Spotted Wing Drosophila management using genomic technologies. 2016.
Rota-Stabelli O, Blaxter M, Anfora G. Drosophila suzukii [Internet]. Vol. 23, Current Biology. Elsevier; 2013. p. R8. Available from: http://dx.doi.org/10.1016/j.cub.2012.11.021
Briem F, Eben A, Gross J, Vogt H. An invader supported by a parasite: Mistletoe berries as a host for food and reproduction of Spotted Wing Drosophila in early spring. J Pest Sci (2004) [Internet]. 2016 Jul [cited 2017 Jul 14];89(3):749–59. Available from: http://link.springer.com/10.1007/s10340-016-0739-6
Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. 2011;(January):1368–1374.
Peralta-Manzo JJ, Lezama-Gutiérrez R, Castrejón-Agapito H, Mora JC la, Rebolledo-Domínguez O. Uso de Metarhizium anisopliae y Cordyceps bassiana (Ascomycetes) para el control de Drosophila suzukii (Diptera: Drosophilidae) en cultivo de zarzamora (Rubus fruticosus). Entomol Mex. 2014;1:230–235.
Cini A, Ioriatti C, Anfora G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectology. 2012;65(1):149–160.
Cancino MDG, Hernández AG, Cabrera JG, Carrillo GM, González JAS, Bernal HCA. Parasitoides de Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) en Colima, México. Southwest Entomol. 2015;40(4):855–858.
Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS. The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci (2004). 2014;87(3):379–383.
Santadino MV, Riquelme Virgala MB, Ansa MA, Bruno M, Di Silvestro G, Lunazzi EG. Primer registro de Drosophila suzukii (Diptera: Drosophilidae) asociado al cultivo de arándanos (Vaccinium spp.) de Argentina First record of Drosophila suzukii (Diptera: Drosophilidae) in blueberry (Vaccinium spp.) from Argentina. Rev la Soc Entomológica Argentina [Internet]. 2015;74(4):183–185. Available from: www.eppo.int/QUARANTINE/Alert_List/insects/Drosophi-
Dagatti CV, Marcucci B, Herrera ME, Becerra VC. Primera detección de Drosophila suzukii (Diptera: Drosophilidae) en frutos de zarzamora en Mendoza, Argentina. Rev la Soc Entomológica Argentina. 2018;77(3):26–29.
Penca C, Adams DC, Hulcr J. The Cuba-Florida plant-pest pathway. Insecta mundi [Internet]. 2016 [cited 2017 Jul 14];0490(June 24):1–17. Available from: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1995&context=insectamundi
Renkema JM, Wright D, Buitenhuis R, Hallett RH. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci Rep [Internet]. 2016;6(January):1–10. Available from: http://dx.doi.org/10.1038/srep21432
Eben A, Sporer F, Vogt H, Wetterauer P, Wink M. Search for Alternative Control Strategies of Drosophila suzukii (Diptera: Drosophilidae): Laboratory Assays Using Volatile Natural Plant Compounds. Insects [Internet]. 2020;11(0811). Available from: www.mdpi.com/journal/insects
Jacas JA, Vinuela E. Analysis of a Laboratory Method to Test the Effects of Pesticides on Adult Females of Opius concolor (Hym., Braconidae), a Parasitoid of the Olive Fruit Fly, Bactrocera oleae (Dip., Tephritidae). Biocontrol Sci Technol. 1994;4(2):147–154.
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Queda; 2016. p. 496.
Vizcaíno Páez S. Safrol y Apiol: metabolismo, preparación de derivados y actividad antifúngica contra el hongo fitopatógeno Botryodiplodia theobromae. 2014 [cited 2017 Jul 14];95. Available from: http://www.bdigital.unal.edu.co/11815/
Sánchez Y, Correa TM, Abreu Y, Pino O. Efecto del aceite esencial de Piper auritum Kunth y sus componentes sobre Xanthomonas albilineans ( Ashby ) Dowson y Xanthomonas campestris pv . campestris ( Pammel ) Dowson Effect of the essential oil of Piper auritum Kunth and its components against Xan. Rev Protección Veg. 2013;28(3):204–210.
Sánchez Y, Pino O, Correa TM, Naranjo E, Iglesia A. Estudio químico y microbiológico del aceite esencial de. Rev Protección Veg. 2009;24(1):39–46.
Mendoza-García EE, Ortega-Arenas LD, Pérez-Pacheco R. Repellency , toxicity , and oviposition inhibition of vegetable extracts against greenhouse whitefly Trialeurodes vaporariorum ( Westwood ) ( Hemiptera : Aleyrodidae ). 2014;74(March):41–48.
Rojas Fernández MM, López MC, Sánchez Pérez Y, Brito I D, Montes De Oca Ii R, Martínez I Y, et al. Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subsp. carotovorum. Rev Protección Veg. 2014;29(3):197–203.
Yang N-W, Li A-L, Wan F-H, Liu W-X, Johnson D. Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B. Crop Prot [Internet]. 2010;29(10):1200–1207. Available from: http://dx.doi.org/10.1016/j.cropro.2010.05.006
Moazeni N, Khajeali J, Izadi H, Mahdian K. Chemical composition and bioactivity of Thymus daenensis Celak (Lamiaceae) essential oil against two lepidopteran stored-product insects. J Essent Oil Res [Internet]. 2014 Mar [cited 2017 Jul 14];26(2):118–24. Available from: http://dx.doi.org/10.1080/10412905.2013.860412
Mostafa ME, Youssef NM, Abaza M. Insecticidal activity and chemical composition of plant essential oils against cotton mealybug , Phenacoccus solenopsis ( Tinsley ) ( Hemiptera : Pseudococcidae ) Mohamed Elhosieny Mostafa , Naglaa Mohamed Youssef and Anwaar. 2018;6(2):539–543.
Rafeeq KUMA, Gokuldas M. Antifeedant effect of crude extracts prepared from four plants on a household pest , the rubber plantation litter beetle , Luprops tristis Fabricius ( Tenebrionidae : Coleoptera ). J Agric Technol 2013. 2013;9(1):245–255.
Isman MB, Grieneisen ML. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci [Internet]. 2014;19(3):140–145. Available from: http://dx.doi.org/10.1016/j.tplants.2013.11.005
Renkema JM, Buitenhuis R, Hallett RH. Reduced Drosophila suzukii infestation in berries using deterrent compounds and laminate polymer flakes. Insects. 2017;8(4).
Park CG, Jang M, Yoon KA, Kim J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind Crops Prod [Internet]. 2016 Oct [cited 2017 Jul 14];89:507–513. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0926669016303922
Park CG, Jang M, Shin E, Kim J. Myrtaceae plant essential oils and their β-triketone components as insecticides against drosophila suzukii. Molecules. 2017;22(7).
Tak J-H, Isman MB. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Sci Rep [Internet]. 2017 Feb [cited 2017 Aug 2];7:42432. Available from: http://www.nature.com/articles/srep42432
Carayon JL, Téné N, Bonnafé E, Alayrangues J, Hotier L, Armengaud C, et al. Thymol as an alternative to pesticides: Persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environ Sci Pollut Res. 2014;21(7):4934–4939.
Blenau W, Rademacher E, Baumann A. Plant essential oils and formamidines as insecticides/ acaricides: What are the molecular targets? Apidologie [Internet]. 2012 May [cited 2017 Jul 6];43(3):334–347. Available from: https://link.springer.com/article/10.1007/s13592-011-0108-7
Liu X, Krause WC, Davis RL. GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning. Neuron. 2007;56(6):1090–102.
Bonnafé E, Drouard F, Hotier L, Carayon JL, Marty P, Treilhou M, et al. Effect of a thymol application on olfactory memory and gene expression levels in the brain of the honeybee Apis mellifera. Environ Sci Pollut Res. 2015;22(11):8022–8030.
Bruna Czarnobai De Jorge, Gross J. Smart Nanotextiles for Filtration. In: Ehrmann A, Nguyen TA, Tri PN, editors. Nanosensors and Nanodevices for Smart Multifunctional Textiles. 1st Editio. Elsevier; 2021. p. 203–227.
Khoobdel M, Ahsaei SM, Farzaneh M. Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomol Res. 2017;47(3):175–184.
Abduz Zahir A, Bagavan A, Kamaraj C, Elango G, Abdul Rahuman A. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopestic. 2012;5(SUPPL.):95–102.
Ahmadi Z, Saber M, Bagheri M, Mahdavinia GR. Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. J Pest Sci (2004). 2018;91(2):837–848.
Sankar MV, Abideen S. Pesticidal effect of Green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostructures. 2015;5(3):32–39.
Adel MM, Salem NY, Abdel-Aziz NF, Ibrahim SS. Application of new nano pesticide geranium oil loaded-solid lipid nanoparticles for control the black cutworm agrotis ipsilon (Hub.) (lepi., noctuidae). EurAsian J Biosci. 2019;13(2):1453–1461.
Sharma A, Sood K, Kaur J, Khatri M. Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol [Internet]. 2019;18(March):101079. Available from: https://doi.org/10.1016/j.bcab.2019.101079
Choi W Il, Lee EH, Choi BR, Park HM, Ahn YJ. Toxicity of Plant Essential Oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol. 2003;96(5):1479–1484.
Kim S, Chae SH, Youn HS, Yeon SH, Ahn YJ. Contact and fumigant toxicity of plant essential oils and efficacy of spray formulations containing the oils against B- and Q-biotypes of Bemisia tabaci. Pest Manag Sci. 2011;67(9):1093–9.
Kumar P, Mishra S, Malik A, Satya S. Insecticidal properties of Mentha species: A review. Ind Crops Prod [Internet]. 2011;34(1):802–17. Available from: http://dx.doi.org/10.1016/j.indcrop.2011.02.019
Gross J, Gündermann G. Advances in insect control and resistance management. In: A.R. Horowitz II, editor. Advances in Insect Control and Resistance Management. Switzerland: Springer International Publishing; 2016. p. 1–339.