In vitro antifungal activity of silver nanoparticles from Leea coccinea L. leaves against Fusarium spp. and Penicillium spp.
Main Article Content
Abstract
The objective of this work was to determine the antifungal activity of three batches of AgNPs obtained from Leea coccinea L. on mycelial growth of Fusarium spp. and Penicillium spp. associated with common bean (Phaseolus vulgaris L.) and potato (Solanum tuberosum L.) seeds and spore germination of of Fusarium spp. Seven concentrations (0.485, 0.242, 0.121, 0.060, 0,03, 0,.015, and 0.007 mg/ml) of the AgNPs suspensions were evaluated using the serial dilution method. The Minimum Fungicide Concentration (MFC) of the AgNPs against the different microorganisms was determined. The results showed that the application of the AgNPs was effective in inhibiting growth of Fusarium spp. and Penicillium spp. The CMF of the AgNPs from the three batches ranged between 0.485 and 0.242 mg/ml against the phytopathogenic agents. The inhibition of mycelial growth of phytopathogens increased with increasing concentrations. The suspension of AgNPs from L. coccinea affected spore germination of the isolates of F. oxysporum and Fusarium spp. No. 1 in the two highest concentrations (0.485 and 0.242 mg/ml). It was confirmed that the higher the AgNPs concentration, the greater the antifungal effect on mycelial growth and spore germination of the phytopathogens studied. The results obtained denote the efficacy of this product as an alternative in the fight against phytopathogenic fungi.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra, siempre que se indique su autor y la primera publicación en esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
References
Akpinar I, Unal M, Sar T. Potential antifungal effects of silver nanoparticles (AgNPs) of different sizes against phytopathogenic Fusarium oxysporum f. sp. radicis-lycopersici (FORL) strains. SN Applied Sciences. 2021;3:506. DOI: 10.1007/s42452-021-04524-5
Martínez de la Parte E, Cantillo T, García D. Hongos asociados a semillas de Phaseolus vulgaris L. cultivadas en Cuba. Biot Veg. 2014;14(2):99–105.
Esquivel-Figueredo RC, Mas-Diego SM. Síntesis biológica de nanopartículas de plata: revisión del uso potencial de la especie Trichoderma. Rev Cub Quím. 2021;33(2):23–45.
Ahmad M, Ali A, Ullah Z, Sher H, Dai D-Q, Ali M, et al. Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently controls fusarium wilt disease of tomato. Front Bioeng Biotechnol. 2022;10:988607. DOI: 10.3389/fbioe.2022.988607
Mishra S, Singh BR, Naqvi AH, Singh H. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep. 2017;7:45154. DOI: 10.1038/srep45154
Matras E, Gorczyca A, Wojciech S, Oćwieja M. Surface properties-dependent antifungal activity of silver nanoparticles. Sci Rep. 2022;12:18046. DOI: 10.1038/s41598-022-22659-2
Travieso MC, Rubio OA, Alvarez PB, Corzo LM, Díaz PL, Acosta ME, et al. Biosynthesis of fluorescent silver nanoparticles from Leea coccinea leaves and their antibacterial potentialities against Xanthomonas phaseoli pv phaseoli. Bioresour Bioprocess. 2021;8(1):3. DOI: 10.1186/s40643-020-00354-2
Procop GW, Dufresne PJ, Berkow E, Cullen SK, Fuller J, Hanson KG, et al. CLSI. Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. 3rd ed. Clinical and Laboratory Standards Institute; 2022. (CLSI supplement M38M51S).
Di Rienzo J, Balzarini M, González L, Tablada M, Guzmán W, Robledo C, et al. InfoStat Profesional versión 2.1. Argentina: Universidad Nacional de Córdoba; 2016.
Alvarez-Carvajal F, Gonzalez-Soto T, Armenta-Calderón AD, Méndez Ibarra R, Esquer-Miranda E, Juarez J, et al. Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia. 2020;XXII(3):73–80. DOI: 10.18633/biotecnia.v22i3.952
Elamawi RM, Al-Harbi RE. Effect of biosynthesized silver nanoparticles on Fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. J Plant Prot Path Mansoura Univ. 2014;1(12):991–1007. DOI: 10.21608/jppp.2014.87901
Win T, Khan S, Fu P. Fungus- (Alternaria sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. J Nanotechnol. 2020;2020:1–9. DOI: 10.1155/2020/8828878
Elamawi RM, Al-Harbi RE, Hendi AA. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 2018;28(1):28. DOI: 10.1186/s41938-018-0028-1
Al-Zubaidi S, Al-Ayafi A, Abdelkader H. Biosynthesis, Characterization and Antifungal Activity of Silver Nanoparticles by Aspergillus niger Isolate. J Nanotechnol Res. 2019;1(1):023–36. DOI: 10.26502/jnr.2688-8521002
Abdelmalek GAM, Salaheldin AT. Silver Nanoparticles as a Potent Fungicide for Citrus Phytopathogenic Fungi. J Nanomed Res. 2016;3(5):1–8. DOI: 10.15406/jnmr.2016.03.00065
Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM, et al. Fabrication of Silver Nanoparticles Against Fungal Pathogens. Nanotechnol. 2021;3:679358. DOI: 10.3389/fnano.2021.679358
Ali MA, Ahmed T, Wu W, Hossain A, Hafeez R, Masum MI, et al. Advancements in Plant and Microbe-Based Synthesis of Metallic Nanoparticles and Their Antimicrobial Activity against Plant Pathogens. Nanomater. 2020;10:1146. DOI: 10.3390/nano10061146
Kumari M, Giri VP, Pandey S, Kumar M, Katiyar R, Nautiyal CS, et al. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pestic Biochem Physiol. 2019;157:45–52. DOI: 10.1016/j.pestbp.2019.03.005