Control of powdery mildew on pumpkin (Cucurbita pepo L.) under greenhouse conditions

Main Article Content

Jorge Francisco León de la Rocha
Nazario Francisco Francisco
Juan Antonio Juárez Cortez
Humberto Rafael Bravo Delgado
Irma García Cruz

Abstract

The objective of this study was to define the optimal concentrations and timing of applications of oils, mineral salts, and biological control agents for powdery mildew management in squash (Cucurbita pepo L. cv. ‘Grey Zucchini’) under greenhouse conditions. After seven days of seed germination, the true leaves of the seedlings were removed and only the cotyledons remained. They were then inoculated with the pathogenic fungus, and three concentrations of the products were applied at two time: preventively or curatively. At the doses evaluated, the preventive applications of any of the products (oils, mineral salts, or biological control agents) showed some effect on the disease, and the disease severity did not significantly differ from the control. Compared with the control, which showed 80.93%, the curative treatments showed 41.67% and 71.43% disease severity with significant differences at medium concentrations for oils and low concentrations for salts (10 ml.L-1) and (2 g.L-1), respectively. On this basis, the curative applications for oils and salts were selected, with the intermediate concentration (10 ml.L-1) for the former and the minimum concentration for the latter (2 g.L-1, 2 ml.L-1).

Article Details

How to Cite
1.
León de la Rocha JF, Francisco Francisco N, Juárez Cortez JA, Bravo Delgado HR, García Cruz I, Reyes Duque Y. Control of powdery mildew on pumpkin (Cucurbita pepo L.) under greenhouse conditions. Rev. Protección Veg. [Internet]. 2025 Jul. 9 [cited 2025 Jul. 13];40:https://cu-id.com/2247/v40e10. Available from: https://revistas.censa.edu.cu/index.php/RPV/article/view/1412
Section
ORIGINAL ARTICLES

References

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). FAOSTAT: Producción de calabazas en el mundo [Internet]. Roma: FAO; 2024 [citado 5 mar 2025]. Disponible en: https://www.fao.org/faostat

Kpodo FM, Jato J, Adjei CNA, Walter A, Agbenorhevi JK, Duah J, et al. Physicochemical and functional properties of pulp and pectin from agro-waste of three Cucurbitaceae species. Food Chemistry Advances. 2023;3:100530. https://doi.org/10.1016/j.focha.2023.100530

Gregorio R, González D, Félix R, Chacón S. Morphological and molecular identification of new records and new host plants of powdery mildews (Erysiphaceae) from Mexico. Botany. 2022; 100 (7): 533-49. https://doi.org/10.1139/cjb-2021-0209

Elagamey E, Abdellatef M, Haridy M, Abdelaziz E. Evaluation of natural products and chemical compounds to improve the control strategy against cucumber powdery mildew. European Jour. Plant Pathology. 2023; 165: 385-400. https://doi.org/10.1007/s10658-022-02612-9

Ünlü E, Çalış Ö, Say A, Karim AA, Yetişir H, Yılmaz S. Investigation of the effects of Bacillus subtilis and Bacillus thuringiensis as bio-agents against powdery mildew (Podosphaera xanthii) disease in zucchini (Cucurbita pepo L.). Microbial Pathogenesis. 2023; 185: 106430. https://doi.org/10.1016/j.micpath.2023.106430

Santiago M, Sánchez G, Pariona N, Hernández LG, Chiquito R. ¿La nueva terapia para las plantas? – Los aceites esenciales para control de enfermedades en agricultura. ITEA-Información Técnica Económica Agraria. 2024. 120 (2): 116-132. https://doi.org/10.12706/itea.2024.005

Barnea D, Yermiyahu U, Rav-David D, Elad Y. Effect of mineral nutrition and salt spray on cucumber downy mildew (Pseudoperonospora cubensis). Plants (Basel). 2022; 11(8): 1007. https://doi.org/10.3390/plants11081007

Elad Y, Barnea D, Rav-David D, Yermiyahu U. Nutrient status of cucumber plants affects powdery mildew (Podosphaera xanthii). Plants (Basel). 2021; 10 (10): 2216. https://doi.org/10.3390/plants10102216

Mostafa Y, Hashem M, Alshehri A, Alamri S, Eid E, Ziedan ES, et al. Effective management of cucumber powdery mildew with essential oils. Agriculture. 2021; 11: 1177. https://doi.org/10.3390/agriculture11111177

Deresa EM, Diriba TF. Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. Heliyon. 2023; 9(3): e13810. https://doi.org/10.1016/j.heliyon.2023.e13810

Chaudhary R, Nawaz A, Khattak Z, Butt MA, Fouillaud M, Dufossé L, et al. Microbial bio-control agents: A comprehensive analysis on sustainable pest management in agriculture. Journal of Agriculture and Food Research. 2024; 18: 101421. https://doi.org/10.1016/j.jafr.2024.101421

Elgamal NG, Ali Khalil MS. First report of powdery mildew caused by Podosphaera xanthii on Luffa cylindrica in Egypt and its control. Jour. Plant Protection Research. 2020; 60 (3): 311-9. https://doi.org/10.24425/jppr.2020.133954

Emannuel OVM, Vieira V, Costa C, Silva-Mann R. Unlocking plant defenses: Harnessing the power of beneficial microorganisms for induced systemic resistance in vegetables – A systematic review. Biological Control. 2024; 188: 105428. https://doi.org/10.1016/j.biocontrol.2023.105428

Trupo M, Magarelli RA, Martino M, Larocca V, Giorgianni A, Ambrico A. Crude lipopeptides from culture of Bacillus subtilis strain ET-1 against Podosphaera xanthii on Cucumis melo. Journal of Natural Pesticide Research. 2023; 4: 100032. https://doi.org/10.1016/j.napere.2023.100032

Abo-Elyousr KAM, Seleim MA, Almasoudi NM, Bagy HM. Evaluation of native bacterial isolates for control of cucumber powdery mildew under greenhouse conditions. Horticulturae [Internet]. 2022; 8 (12). https://doi.org/10.3390/horticulturae8121143

Eid NA, Abutaha MM, Fahmy WGE, Ahmed FA, Zaki KI. Exploiting endophytic bacteria towards managing squash powdery mildew disease. Physiological and Molecular Plant Pathology. 2024; 133: 102375. https://doi.org/10.1016/j.pmpp.2024.102375

Prahl RE, Khan S, Deo RC. Ampelomyces mycoparasites of powdery mildews – a review. Canadian Jour. Plant Pathology. 2023; 45 (4): 391-404. https://doi.org/10.1080/07060661.2023.2206378

IBM Corp. IBM SPSS Statistics for Windows, Version 30.0 [Software]. Armonk (NY): IBM Corp.; 2024

Yáñez M, Ruvalcaba L, Zavaleta E, Tafoya F, Alcaraz T, Valdés T. Sales minerales para el control de la cenicilla (Oidium sp.) en pepino. Revista Mexicana de Ciencias Agrícolas. 2017; 7: 1551-1561. https://doi.org/10.29312/remexca.v7i7.149

Quesada E, Garrido I, González N, Yousef M. Ecosystem services of entomopathogenic ascomycetes. Jour. Invertebrate Pathol. 2023; 201: 108015. https://doi.org/10.1016/j.jip.2023.108015

Xie D, Cai X, Yang C, Xie L, Qin G, Zhang M, et al. Studies on the control effect of Bacillus subtilis on wheat powdery mildew. 2021; 77 (10): 4375-82. https://doi.org/10.1002/ps.6471

Pressecq T, Nicot P, Bourgeay J, Rousselin A, Goillon C, Bardin M, et al. Using microbial biocontrol for disease control in French vegetable production: An analysis of the perspectives of farmers and farm advisors. Crop Protection. 2024; 180: 106648. https://doi.org/10.1016/j.cropro.2024.106648

Pressecq T, Nicot PC, Bourgeay JF, Rousselin A, Goillon C, Tchamitchian M, et al. Can available scientific information be mobilized to ensure the efficacy of microbial biocontrol agents against plant diseases in the field? Crop Protection. 2025; 190: 107115. https://doi.org/10.1016/j.cropro.2025.107115

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.