Potencialidades de grupos de nematodos para el manejo de plagas del orden Thysanoptera. II: Entomopatógenos
Contenido principal del artículo
Resumen
Este artículo de revisión, cuya primera parte se dedicó a nematodos parásitos de trips, tuvo como objetivo poner a disposición de actores sociales vinculados a la agricultura, información resumida acerca de las potencialidades de los nematodos entomopatógenos (NEPs) (Heterorhabditis y Steinernema) para el manejo de plagas de Thysanoptera, como una contribución al diseño y ejecución de los estudios que, en Cuba, se pueden ejecutar para la inclusión de estos agentes de control biológico (ACB) en el manejo de Megalurothrips usitatus (Bagnall) y otros trips de importancia. Los NEPs se estudiaron para establecer su uso en el manejo de plagas de Thysanoptera; más de un centenar de estudios están disponibles en bases de datos, demostrando la eficacia de ciertas especies/cepas de ambos géneros, para su uso como ACB individual o combinados con biorreguladores y productos de origen botánico o químico. Productos comerciales, donde los ingredientes activos son especies/cepas de NEPs, se utilizan eficazmente contra especies de trips en condiciones de producción en hortalizas y flores. Las especies más estudiadas fueron Steinernema feltiae Filipjev y Heterorhabditis bacteriophora Poinar y los trips diana; de parte de los ensayos, fueron Frankliniella occidentalis Pergande y Thrips tabaci Lindeman. Diversos estudios evaluaron dosis de juveniles infectivos (JI) en aplicaciones a suelos y sustratos para el manejo de prepupas y pupas; mientras que, en otros ensayos, se determinaron la eficacia de aplicaciones foliares. Elementos clave resultan las dosis de aplicación, donde la efectividad del NEP depende del uso de más de 100-200 JI.cm de sustrato/suelo-1. No se hallaron estudios del uso de NEPs para manejar M. usitatus, por lo que deben ser objeto de futuras investigaciones en Cuba.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra, siempre que se indique su autor y la primera publicación en esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Citas
Capinera JL. Order Thysanoptera - Thrips. Handbook of Vegetable Pests. Second Edition. Academic Press. Elsevier Inc. 2020:581-600. ISBN 978-0-12-814488-6
Suris M. Actualización de la fauna de tisanópteros en Cuba. Rev. Protección Veg. 2021;36(No. Especial):31-32.
Castillo-Reyes N, Delgado-Álvarez A, Mirabal-Acosta L, González-Muñoz C. Abundancia y frecuencia relativa de la comunidad de insectos fitófagos asociada al cultivo del frijol. Rev. Protección Veg. 2021;36(No. Especial):68.
Elizondo AI, Milán M, Tejeda M, Rojas P. Nesidiocoris tenuis Reuter (Hemiptera: Miridae) como agente de control biológico de trips en el cultivo de la papa Solanum tuberosum L. en Cuba. Rev. Protección Veg. 2021;36(No. Especial):65
Elizondo AI, Murguido CA, Rodríguez P, González C, Suris M. Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae), plaga emergente en el cultivo de frijol (Phaseolus vulgaris L.); sus daños en Cuba. Rev. Protección Veg. 2021;36(2):1-5.
Bethke A, Dreistadt SH, Varela LG, Phillips PA, O’Donnell CA. Thrips. Integrated Pest Management for Home Gardeners and Landscape Professionals. Pest Notes. 2014; Publication 7429: 1-8. Disponible en: http://ipm.ucanr.edu/PDF/PESTNOTES/pnthrips.pdf. Acceso: 7enro 2022.
Kumar V, Kakkar G, Palmer CL, McKenzie CL, Osborne LS. Thrips Management Program for Horticultural Crops. ENY-987. Department of Entomology and Nematology, UF/IFAS Extension. Original publication date September. 2016:8pp.
Stock SP. Diversity, biology and evolutionary relationships. In Nematode Pathogenesis of Insects and Other Pests - Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK. 2015:3-28.
Suris M. Megalurothrips usitatus Bagnall (Thysanoptera: Thripidae), plaga emergente del cultivo del frijol: Revisión Bibliográfica. Rev. Protección Veg. 2021;36(2):1-8https://eqrcode.co/a/WpfR7J
Rodríguez MG. Potencialidades de grupos de nematodos para el manejo de plagas del orden Thysanoptera. I: Parásitos. Rev. Protección Veg. 2022;37(1):12pp. https://cu-id.com/2247/v37n1e05
Márquez ME, Vázquez LL, Rodríguez MG, Ayala JL, Fuentes F, Ramos M, et al. Biological control in Cuba. En: Van Lenteren, VHP Bueno, MG Luna, YC Colmenarez (Eds). Biological control in Latin America and the Caribbean: Its rich history and bright future. CABI Invasives Series. 2020:176-193. ISBN: 978 1789 2424 47
Shapiro-Ilan DI, Hiltpold I, Lewis EE. Nematodes. En Hajek AE, Shapiro-Ilan D. (Eds). Ecology of Invertebrate DiseasesFirst Ed. John Wiley & Sons Ltd. Hoboken, NJ, USA. 2018:414-440.
Lewis EE, Clarkey DJ. Nematode Parasites and Entomopathogens. En Fernando E. Vega & Harry K. Kaya (Eds.). Insect Pathology. Second Edition. Academic Press. Amsterdam- Boston - Heidelberg - London - New York - Oxford - Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo. 2012:393-424. ISBN: 978-0-12-384984-7
Campos-Herrera R. (Ed). Nematode Pathogenesis of Insects and Other Pests-Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK. 2015:531pp.
Shapiro-Ilan D, Hazir S, Glazer I. Basic and Applied Research: Entomopathogenic Nematodes. Microbial Control of Insect and Mite Pests. En Lawrence A. Lacey (Ed.). Microbial Control of Insect and Mite Pests. From Theory to Practice. 2017. Elsevier inc. Academic Press. Elsevier Inc. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo. 2017:91- 05. ISBN: 978-0-12-803527-6. http://dx.doi.org/10.1016/B978-0-12-803527-6.00006-8
Hazir S, Kaya H, Mustapha T, Harun Ç, Shapiro-Ilan D. Basic laboratory and field manual for conducting research with the entomopathogenic nematodes, Steinernema and Heterorhabditis, and their bacterial symbionts. Turkish Jour. Zoology. 2022;46(4):49pp. https://doi.org/10.55730/1300-0179.3085
Hussaini SS, Rajeshwari R. Potential of Entomopathogenic Nematodes. En Rajeshwari R & Vikram Appanna (Eds.). Biopesticides in Horticultural Crops. CRC Boca Raton & Francis Press London Group New York. Narendra Publishing House. 2022:80- 99.
Lacey LA, Georgis R. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol. 2012;44:218-225.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 2015;132:1-41.
Lazarova S, Coyne D, Rodríguez MG, Peteira B, Ciancio A. Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture - A Review. Diversity. 2021;13(64). https://doi.org/10.3390/d13020064
Miles C, Blethen C, Gaugler R, Shapiro-Ilan D, Murray T. Using Entomopathogenic Nematodes for Crop Insect Pest Control. A Pacific Northwest Extension on Publication. PNW 544. Washington State University; Oregon State University; University of Idaho. 2012:9pp.
Ravensberg WJ. A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods, Progress in Biological Control 10. Springer Science+Business Media B.V. 2011. https://doi.org/10.1007/978-94-007-0437-4_2
Saleh MME, Hala MSM, Abonaem M. Commercialization of biopesticides based on Entomopathogenic Nematodes. En: El-Wakeil N, Saleh M, Abu-hashim M (Eds). Cottage Industry of biocontrol agents and their applications. Practical Aspects to deal Biologically with Pests and Stresses Facing Strategic CropsSpringer Nature Switzerland. 2020. 253-275. ISBN 978-3-030-33161-0 (eBook). https://doi.org/10.1007/978-3-030-33161-0
Nagesh M, Askary TH, Manohar B, Aracalagud NS, Rajan. Strategies for making entomopathogenic nematodes cost-effective biological control agents. En: Biocontrol agents Entomopathogenic nematodes and slug parasitic nematodes. Abd-Elgawad MMM, Asky TH, Coupland J. (Eds.). CAB International: Oxfordshire, UK; Boston, USA. 2017:596-611.
Pervez R, Eapen SJ. Entomopathogenic Nematodes: An emerging biocontrol agent for insect pest management. En: Anwer A (Ed). Biopesticides and Bioagents. Novel tools for pest management. 2018:181-208. Apple Academic Press Inc. ISBN: 13: 978-1-315-36555-8 (eBook).
Parrella MP. IPM - Approaches and Prospects. En: Parker BL, Skinner M, Lewis T (Eds.). Thrips. Biology and Management. NATO ASI Series. Springer Science+Business Media, LLC. 1993:357-362. https://doi.org/10.1007/978-1-4899-1409-5
Stopar K, Trdan S, Bartol T. Trips and natural enemies through text data mining and visualization. Plant Protection Science. 2021;57(1):47-58 https://doi.org/10.17221/34/2020-PPS
Koppenhöfer A, Shapiro-Ilan DI, Hiltpold I. Entomopathogenic Nematodes in Sustainable Food Production Frontiers in Sustainable Food Systems. 2020;4( article 125):14pp. https://doi.org/10.3389/fsufs.2020.00125.
Platt T, Stokwe NF, Malan AP. A Review of the Potential Use of Entomopathogenic Nematodes to Control Above-Ground Insect Pests in South Africa. S. Afr. J. Enol. Vitic. 2020;41(1):1-16. https://doi.org/10.21548/41-1-2424.
Almandoz J, Fernández E, González G, Casanueva K, Baró Y, Porras A, et al. Análisis de la utilización de agentes de control biológico en los sistemas de cultivos protegidos en Cuba. Fitosanidad. 2016;20(1):45-51.
Instituto de Investigaciones de Sanidad Vegetal (INISAV). Recorrido en provincias del país para evaluar la situación sobre el trips de las flores del frijol Megalurothrips usitatus (Bagnall) (noticia en web). Disponible en https://www.inisav.cu (actualizado el 1 del 12 del 21). Consulta el 14 febrero 22.
Rodríguez MG. Entomopathogenic nematodes in Cuba: From laboratories to popular biological control agents for pest management in a developing country. En: Campos-Herrera R (Ed). Nematode Pathogenesis of Insects and Other Pests - Ecology and Applied Technologies for Sustainable Plant and Crop Protection; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015:343-364.
Wardlow L R , Piggott S, Goldsworthy R. Foliar application of Steinernema feltiae for the control of flower thrips. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 2001;66(2a):285-91.
Wraight SP, Lopes RB, Faria M. Microbial control of mite and insect pests of greenhouse crops. En: Lacey LA (Ed.). Microbial Control of Insect and Mite Pests, Elsevier. Amsterdam. 2017:237-252. https://doi.org/10.1016/B978-0-12-803527-6.00016-0.
Griffin CT, Boemare N E, Lewis E E. Biology and behaviour. En: P. Grewal, R.-U. Ehlers & D. I. Shapiro-Ilan (Eds.). Nematodes as Biocontrol Agents. CABI. Wallingford. 2005:47-64.
Gerritsen JM, Georgieva J, Wiegers GL. Oral toxicity of Photorhabdus toxins against thrips species. Jour. Invertebrate Pathol. 2005;88:207-211.
Uma GP, Prabhuraj A, Vimala A. Bioefficacy of Photorhabdus luminescens, a symbiotic bacterium against Thrips palmi Karny (Thripidae: Thysanoptera). Journal of Biopesticides. 2010;3(2):458-462.
Arthurs S, Heinz KM. Evaluation of the nematodes Steinernema feltiae and Thripinema nicklewoodi as biological control agents of western flower thrips Frankliniella occidentalis infesting chrysanthemum. Biocontrol Science and Technology. 2006;16(2):141-155.
Smith RM, Cuthbertson AGS, Walters KFA. Extrapolating the use of an entomopathogenic nematode and fungus as control agents for Frankliniella occidentalis to Thrips palmi. Phytoparasitica. 2005;33(5):436-440.
North JP, Cuthbertson AGS, Walters KFA. The efficacy of two entomopathogenic biocontrol agents against adult Thrips palmi (Thysanoptera:Thripidae). Jour. Invertebrate Pathol. 2006;92:89-92.
Saffaria T, Hossein M, Javad Ki. Pathogenicity of three entomopathogenic nematodes against the onion thrips, Thrips tabaci Lind. (Thys.; Thripidae). Archives of Phytopathology and Plant Protection. 2013;46(20):2459-2468, http://dx.doi.org/10.1080/03235408.2013.797158.
Boaria A. Biological and integrated control of Frankliniella occidentalis (Pergande) on ornamentals in the northeastern Italy. [PhD Thesis]. Universita degli Studi di Pavoda. Department of Agronomy, Food, Natural Resources, Animals and the Environment. 2014:219pp.
Renkema J, Evans B, Devkota S. Management of flower thrips in Florida strawberries with Steinernema feltiae (Rhabditda: Steinernematdae) and the insecticide sulfoxaflor. Florida Entomologist. 2018;101(1):102-108.
Huseein MA, El-Mahdi FS. Efficiency of three formulated entomopathogenic nematodes against the greenhouse onion thrips, Thrips tabaci under aquaculture system. Journal of Biopesticides. 2019;12(1):134-138.
Gulzar S, Wakil W, Shapiro-Ilan DI. Combined Effect of Entomopathogens against Thrips tabaci Lindeman (Thysanoptera Thripidae): Laboratory, Greenhouse and Field Trials. Insects. 2021;12(456):7pp. https://doi.org/10.3390/insects1205045.
Dlamini TM, Allsopp E, Malan AP. Application of Steinernema yirgalemense to control Frankliniella occidentalis (Thysanoptera: Thripidae) on blueberries. Crop Protection. 2022; 128: 105016. https://doi.org/10.1016/j.cropro.2019.105016.
Ebssa L, Borgemeister C, Berndt O, Poehling HM. Efficacy of entomopathogenic nematodes against soil-dwelling life stages of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Jour. Invertebrate Pathol. 2001;78:119-127. https://doi.org/10.1006/jipa.2001.5051.
Giayetto AL, Cichón LI. Distribución, gama de huéspedes y especificidad de cinco poblaciones de Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae) del Alto Valle de Río Negro y Neuquén, Argentina. RIA. 2006;35:163-183.
San-Blas E, Rosales C, Torres A. Entomopathogenic nematodes in tropical agriculture: current uses and their future in Venezuela. En: Campos-Herrera, R. (Ed.). Nematode Pathogenesis of Insects and Other Pests - Ecology and Applied Technologies for Sustainable Plant and Crop Protection. Springer, Cham. 2015:365-389.
Saito T, Brownbridge M. Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biological Control. 2016;92:92-100 http://dx.doi.org/10.1016/j.biocontrol.2015.10.003.
Saffaria T, Madadia H, Karimi J. Pathogenicity of three entomopathogenic nematodes against the onion thrips, Thrips tabaci Lind. (Thys.; Thripidae). Archives of Phytopathology and Plant Protection, 2013;46(20):2459-2468, http://dx.doi.org/10.1080/03235408.2013.797158.
Kashkouli M, Khajehali J, Poorjavad N. Impact of entomopathogenic nematodes on Thrips tabaci Lindeman (Thysanoptera: Thripidae) life stages in the laboratory and under semi-field conditions. J Biopest. 2014;7(1):77-84.
Trdan S, Kužnik L, Vidrih M. First results concerning the efficacy of entomopathogenic nematodes against Hercinothrips femoralis (Reuter). Acta agriculturae Slovenica. 2007;89(1):5-13.
Azazy AM, Abdelall MFM, El-Sappagh IA, Khalil AEH. Biological control of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in open fields using Egyptian entomopathogenic nematode isolates. Egyptian Jour. Biological Pest Control. 2018;28(27). http://dx.doi.org/10.1186/s41938-017-0025-9.
García PD, Cuervo WJ. Nematode of the genus Steinernema sp. as a possible controller of Frankliniella occidentalis in the propagation of cuttings of four standard carnation cultivars in the savanna of Bogotá. Centrosur. 2021;1(9):74-81.
Berndt O. Entomopathogenic nematodes and soil-dwelling predatory mites: Suitable antagonists for enhanced biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)? [PhD Thesis]. Von dem Fachbereich Gartenbau der Universität Hannover. 2003. 140 pp.
Kashkouli M, Poorjavad N, Khajehali J. Combination of entomopathogenic nematodes and chemical insecticides for controlling the onion thrips, Thrips tabaci (Thysanoptera: Thripidae) in the laboratory condition. Appl. Ent. Phytopath. 2017;84(2):1-9. http://dx.doi.org/10.22092/jaep.2017.107591.
Trdan S, Znidarcic D, Vidrijh M. Control of Frankliniella occidentalis on glasshouse-grown cucumber: an efficacy comparison of foliar application of Steinernema feltiae and spraying with abamectin. Russian Jour. Nematology. 2007;15(1):25-34.
Otieno JA, Pallmann P, Poehling H-M. The combined effect of soil-applied azadirachtin with entomopathogens for integrated management of western flower thrips. Jour. Applied Entomology. 2015:28pp. http://dx.doi.org/10.1111/jen.12242.
Otieno JA. Integration of soil-applied azadirachtin with predators, entomopathogens and optical/chemical traps for the management of western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). [PhD Thesis]. Leibniz Universität Hannover. 2016:130pp.
Premachandra DWTS, Borgemeister C, Berndt O, Ehlers R-U, Poehling H-M. Laboratory bioassays of virulence of entomopathogenic nematodes against soil-inhabiting stages of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Nematology. 2003;5(4):539-547.
Woldemelak WA. The major biological approaches in the integrated pest management of onion thrips, Thrips tabaci (Thysanoptera: Thripidae). Jour. Horticultural Research. 2020;28(1):13-20. http://dx.doi.org/10.2478/johr-2020-0002 .
Belay D, L Ebssa, C Borgemeister. Time and frequency of applications of entomopathogenic nematodes and their persistence for control of western flower thrips Frankliniella occidentalis. Nematology. 2005;7(4):611-622.
Ebssa L, Borgemeister C, Poehling HM. Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities and temperatures. Biol. Control. 2004;29:145-154. doi: http://dx.doi.org/10.1016/S1049-9644(03)00132-4 .
Sánchez L, Rodríguez MG. Potencialidades de Heterorhabditis bacteriophora Poinar cepa HC1 para el manejo de Hypothenemus hampei FerrII. Compatibilidad con Beauveria bassiana (Balsamo) Vuillemin y endosulfan. Rev. Protección Veg. 2008;23(2):104-111.
González E, Enrique R, Rodríguez MG. Compatibility between Heterorhabditis bacteriophora Poinar strain HC1 and Lecanicillium lecanii Zare & Gams strain Verticen-01 under laboratory conditions. Rev. Protección Veg. 2012;27(3):214.
Casanova Y, Díaz M, Naranjo F, Álvarez JF, Barroso G, Albuernes F, et al. Evaluación de las potencialidades parasíticas de Tetrastichus howardi (Olliff) y efectividad combinada con Heterhorabditis bacteriophora contra Plutella xylostella Lin. en col. Congreso Científico del Instituto Nacional de Ciencias Agrícolas (INCA). 2010. CD ISBN: 978-959-7023-48-7.
Pino O, Roselló D, Peteira B, Enrique R, Miranda I, Rodríguez MG. Efecto de aceites esenciales y componentes seleccionados sobre Heterorhabditis amazonensis Andaló et al. cepa HC1. Rev. Protección Veg. 2021;36(1):12pp. https://eqrcode.co/a/q1TgcG.
Spanoghe BPB, Moens M, Pollet S, Temmerman F, Nuyttens D. Foliar applied entomopathogenic nematodes Steinernema feltiae are not suitable for controlling Thrips tabaci in leek. Bulletin of Insectology. 2015;68(2):287-298.
Gulzar S, Usman M, Wakil W, Wu Si, Oliveira-Hofman C, Srinivasan R, et al. Virulence of Entomopathogenic Nematodes to Pupae of Frankliniella fusca (Thysanoptera: Thripidae). Journal of Economic Entomology. 2021;1-6. http://dx.doi.org/10.1093/jee/toab132 .
Skendžic S, Zovko M, Živkovic I, Lešic V, Lemic D. The impact of climate change on agricultural insect pests. Insects. 2021;12(440). https://doi.org/10.3390/insects1205044